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Surface Registration with
Eigenvalues and Eigenvectors

Hajar Hamidian, Zichun Zhong, Farshad Fotouhi, and Jing Hua

Abstract—This paper presents a novel surface registration technique using the spectrum of the shapes, which can facilitate accurate
localization and visualization of non-isometric deformations of the surfaces. In order to register two surfaces, we map both eigenvalues
and eigenvectors of the Laplace-Beltrami of the shapes through optimizing an energy function. The function is defined by the integration
of a smoothness term to align the eigenvalues and a distance term between the eigenvectors at feature points to align the eigenvectors.
The feature points are generated using the static points of certain eigenvectors of the surfaces. By using both the eigenvalues and the
eigenvectors on these feature points, the computational efficiency is improved considerably without losing the accuracy in comparison
to the approaches that use the eigenvectors for all vertices. In our technique, the variation of the shape is expressed using a scale
function defined at each vertex. Consequently, the total energy function to align the two given surfaces can be defined using the linear
interpolation of the scale function derivatives. Through the optimization of the energy function, the scale function can be solved and
the alignment is achieved. After the alignment, the eigenvectors can be employed to calculate the point-to-point correspondence of
the surfaces. Therefore, the proposed method can accurately define the displacement of the vertices. We evaluate our method by
conducting experiments on synthetic and real data using hippocampus, heart, and hand models. We also compare our method with
non-rigid Iterative Closest Point (ICP) and a similar spectrum-based methods. These experiments demonstrate the advantages and
accuracy of our method.

Index Terms—Geometry-based Technique, Visual Analysis Model, 3D Point-to-Point Alignment.

F

1 INTRODUCTION

Shape registration is one of the important research topics
for scientific visualization, computer vision, and shape anal-
ysis. In biomedical area, its application ranges from analyses
of cardiac deformations [1] to brain structures deformations
caused by diseases such as epilepsy [2] or Alzheimer [3].
Considering that the deformations of most organs such as
heart or brain structures are non-isometric, it is very diffi-
cult to find the correspondence between the shapes before
and after deformation, and therefore, very challenging for
diagnosis purposes.

Traditional landmark-based methods usually detect rel-
evant corresponding points or curves in two shapes, i.e.,
landmarking is essential in many shape registration and
mapping applications [4], [5], [6], [7], [8], [9]. There are two
drawbacks in this type of methods. First, due to the shape
complexity of organs, these methods require labor-intensive
human intervention when done manually, or error-prone
if conducted automatically through spatial detection [10].
Secondly, in many situations, there exists no salient spatial
landmarks in the non-isometric deformations, e.g., in left
ventricle of heart or brain hippocampus.

Shape spectrum is another method to represent the
shape. There is a powerful tool called Laplace-Beltrami (LB)
operator that can analyze the intrinsic property of the shape.
Employing this operator, Reuter [11] and Lévy [12] defined
a shape spectrum approach with the Laplace-Beltrami op-
erator on a manifold and employed the eigenvalues and
eigenvectors as a global shape descriptor [13], [14]. The
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eigenvectors are orthogonal basis functions; therefore, the
shape can be projected to the orthogonal bases and then
analyzed and reconstructed using these bases [15]. As the
geometry changes, the spectrum of the shape changes as
well. Some studies employed the spectrum of this operator
to classify, register, and differentiate shapes [16], [17], [18],
[19]. However, the spectrum through these methods can
only show the global difference between shapes and cannot
map and quantify the non-isometric shape differences due
to the lack of non-isometric registration with spectrum.
Hamidian et al. [20], [21] proposed an alignment method
through the eigenvalues, however, the point-to-point cor-
respondence cannot be determined. Shi et al. [22] used
the difference between the eigenvectors of two surfaces to
generate a conformal mapping, but the method is computa-
tionally expensive. While many promising techniques were
developed, there is still a lack of a method that can generate
the correspondence between points for non-isometric shape
structure change in a timely efficient fashion.

In this paper, we focus on a method based on spectrum
alignment of the non-isometrically deformed surfaces using
both eigenvalue and eigenvector variations in order to find
the correspondence and map the non-isometric deforma-
tions. To search for the alignment, we utilize a scale function
on the surface that deforms one surface to a targeted one.
Compared to the traditional approaches through the exper-
iments, our method can accurately and automatically map
and localize the point-to-point non-isometric deformations
in addition to global difference of the shapes. Because the
spectrum of shape only depends on the intrinsic geometry,
our method is invariant to spatial translation, rotation, scal-
ing, and isometric deformation. Furthermore, our method is
computationally efficient and takes considerably less time
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to execute compared with existing methods [22].

1.1 Related Work

By definition, shape spectrum represents the information
of intrinsic local geometry. It is invariant to isometric de-
formations and different triangulations. Reuter et al. [11]
defined the spectrum of the Laplace-Beltrami operator of a
shape as the signature or fingerprint of the shape. Rustamov
in [23] employed the spectrum of this operator for shape
clustering and classification purposes. Lévy in [12] em-
ployed the theory of stationary waves to study the behavior of
eigenvectors and the static points of the eigenvectors. These
points correspond to the locations that do not move in the
theory of stationary waves. This study shows that the static
points are strongly linked to the geometry of a shape and
these points’ locations change when the geometry varies.
As these points are extracted from eigenvectors, they are
invariant to isometric deformations of the shape. Thus, these
points can be employed as the feature points to describe
the geometry of the shape. Reuter et al. [24], [25] em-
ployed these points, together with the domains generated
by these static points, as topological features to segment
and register different parts of the shapes. But the defor-
mation of the shapes is restricted to be isometric in these
studies. In reality, many deformations, such as heart motion,
brain development, and so on, are not isometric. Hence,
applying geometric spectrum methods for analyzing non-
isometric deformation and registration is very challenging.
Some recent work [26], [22] showed that the shape spectrum
can be controlled with a scale function on the Riemannian
metric. Shi et al. [26] discussed that the eigenvalues and
eigenvectors change according to the Riemannian metric of
a manifold. Later in [22], Shi et al. employed this metric
to measure the difference between the eigenvectors of two
surfaces in order to generate a conformal mapping between
them. To this end, they minimized the difference between
surfaces in the Laplace-Beltrami embedding space using an
optimization approach. This work focused on eigenvector
variation, but the eigenvalue variation was not investigated,
and the method is very computationally expensive. For
instance, to map two hippocampal surfaces with 1000 faces,
the procedure took around 20 minutes on a computer with a
2.6-GHz Intel Xeon CPU and approximately 60 MB memory
consumption. Instead, Hamidian et al. presented a method
to align two surfaces by mapping their eigenvalues [20],
[21]. This method provided a deformation matrix showing
the deformation of the initial surface to the target one but
did not generate a point-to-point correspondence mapping
of the vertices.

There exists other work that employs shape spectrum to
match shapes. Rodolà et al. [27] proposed a method based
on the Laplace–Beltrami eigenvectors for computing partial
functional correspondence between non-rigid shapes that
have isometric deformation. Litany et al. [28] extended this
study to match partial shapes that undergo topological noise
and non-isometric deformation within the same framework.
There are some limitations for this method. The main lim-
itation lies in its reliance on good local features to drive
the matching process. There are recent advances in the field
of spectral shape analysis closely related to the proposed

approach. For instance, Kovnatsky et al. [29] showed how to
modify (align) the eigenvectors of the Laplace-Beltrami op-
erator in order to match non-isometric shapes. Ovsjanikov
et al. [30] proposed a spectral method for shape matching
which is to find an alignment between eigenvectors based
on a set of linear constraints. Later, they [31] presented
a method for finding functional correspondence between
manifolds based on the geometric matrix completion frame-
work [32]. In [31], [33], [34], visualizing shape deformations
based on a spectral representation of the correspondence
was shown. However, the key difference between the meth-
ods mentioned above and our proposed approach lies in
the fact that our method is using both eigenvalues and
eigenvectors to align two manifolds versus these methods
employed only the eigenvectors. Also, our method extracts
feature points from eigenvectors, instead of using all the
points, and employs them to align two surfaces without
loosing accuracy.

In this paper, we present a novel method that can
align two surfaces and visualize the corresponding points
through the variation of geometric spectrum. This is
achieved by mapping eigenvalues and certain feature points
extracted from the eigenvectors of two surfaces. Given two
triangle meshes, the spectra can be varied from one to an-
other with a scale function defined on each vertex. In order
to compute the alignment, we aim to minimize an energy
function which is the integration of a smoothness term for
aligning the eigenvalues and a distance term describing the
distance between the corresponding feature points. Opti-
mizing this energy function is a quadratic programming
problem which can be solved using an iterative method.
Furthermore, we assume that the variation of eigenvalue is
expressed as a linear interpolation of eigenvalues of the two
surfaces. The derivative of the scale function is the solution
of such a problem. Therefore, the final scale function can be
computed by an integral of the derivatives from each step.
Subsequently, the scale function can describe the mapped
surface eigenvectors that can be employed to find the point-
to-point correspondence. Our major contributions in this
work can be summarized as follows:

• We present a spectrum alignment algorithm using
eigenvalue and eigenvector variations for 3D sur-
faces, supporting non-isometric global and local
deformation analysis. In the discrete domain, the
variation of eigenvalues and eigenvectors in terms
of the scale function can be presented as matrices.
Employing these matrices, together with the smooth-
ness function to align the eigenvalues and a distance
function to align the feature points extracted from
eigenvectors, a linear system can be defined. By solv-
ing this system, the eigenvalues and eigenvectors are
aligned and the corresponding points of the surfaces
can be determined.

• Feature points automatically extracted from eigen-
vectors of the surfaces, along with the defined
distance between the corresponding feature points,
can lead to an improved correspondence with con-
siderably reduced computational cost. Because our
method aligns both eigenvalues and eigenvectors at
the same time, a limited number of feature points
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for the eigenvectors are sufficient to warrant the
alignment. This helps to improve the accuracy and
reduce the computational time considerably. These
feature points are proven to be highly related to
the geometry of the shape and they change when
deforming the shape.

• Our developed system demonstrates the accu-
racy and efficiency of the spectral variation and
registration algorithm on visualization of non-
isometrically deformed shapes. The applications to
biomedical imaging problems show that it is a viable
solution for morphometric analysis and visualization
in biomedical applications and clinical diagnoses.

2 SURFACE REGISTRATION USING SPECTRAL
OPTIMIZATION

In this paper, we employ Laplace-Beltrami operator to com-
pute the geometric spectrum of a manifold. Let f1 ∈ C2 be
a real function defined on a Riemannian manifold M . The
Laplace-Beltrami operator M is defined as Mf1 = O · (Of1),
where Of1 is the gradient of f1 and O· is the divergence
on the Manifold M . The eigen-system for this equation is
defined as Mf = −λf, where the family solution {λi} is a
real nonnegative scalar and will result in the corresponding
real family functions of {fi} for i = 0, 1, 2, .... To solve
these differential equations, discrete differential operator is
employed [35]. In this framework, Voronoi region for the
vertices of a triangle mesh is used to construct the Laplacian-
Beltrami matrix as:

Lij =


− cotαij+cot βij

2Ai
if i, j are adjacent,∑

k
cotαik+cot βik

2Ai
if i = j,

0 otherwise,
(1)

where αij and βij are the two angles opposite to the edge
in the two triangles sharing the edges i, j and Ai is the area
of Voronoi region at vertex i. k is the indices of triangles
within 1-ring neighborhood of the vertex i. Therefore, the
eigen equation turns to Lf = λf, where f is n dimensional
vector for each λ in which n is the number of vertices of
manifold. To solve this equation we use a sparse matrix W
and a diagonal matrix S such that:

Wij =


− cotαij+cot βij

2 if i, j are adjacent,∑
k

cotαik+cot βik

2 if i = j,
0 otherwise,

and Sii = Ai. Thus, the Laplace Matrix L can be written as
L = S−1W and eigen equation can be presented as:

Wfn = λnSfn, (2)

where fn and λn are the nth eigenvector and eigenvalue,
respectively. The eigenvectors for different eigenvalues are
orthogonal in term of S dot product. Using this concept, an
embedding IM : M → R∞ is proposed as follows [36]:

IΦ
M = (

f1(x)√
λ1

,
f2(x)√
λ2

, ...,
fn(x)√
λn

) ∀x ∈M, (3)

where Φ = {f0, f1, f2, ...}. By finding the proper mapping
between the eigenvector embeddings after solving the sign
ambiguity, two shapes can be aligned. Considering that for

each eigenvalue, there is an eigenvector of size n, mapping
eigenvectors of two surfaces for all the vertices is time-
consuming. Therefore, we propose to use the eigenvector
values for certain feature points to map the shapes.

2.1 Calculating the Feature Points

Using the spectrum of Laplace-Beltrami operator, Lévy [12]
employed the theory of the stationary waves to model the
shape. The spectrum contains a lot of information about
the shape which can therefore be used for matching and
mapping among different shapes. Looking closely to the
eigenvectors, it shows that the n-th eigenvector can have at
most n nodal domains. The nodal domains are the partitions
of the surface that have the same sign. In this work, we
are interested in the points, called nodal sets, which are the
static points between two nodal domains. In other words,
the nodal sets separate the nodal domains. These nodes
are the still zones in the theory of stationary waves. Lévy
in [12] showed that these points are strongly linked to the
geometry of the shapes. In our method, we use the nodal
sets of certain eigenvectors as the feature points to map the
eigenvectors of two shapes. As mentioned before, the n-th
eigenvector has at most n− 1 nodal sets which partition the
n nodal domains. We use this concept and employ the nodal
sets of the eigenvectors corresponding to the first non-zero
eigenvalue as the first set of feature points. Figure 1a shows
the first non-zero eigenvector for a sample left ventricle of
heart and the red set of points in Figure 1b show this first
feature set. The second feature sets are the nodal sets for the
eigenvector corresponding to the second or third non-zero
eigenvalue that are parallel to the first set of feature points.
We use the parallel points in order to get exclusive sets of
points for mapping the eigenvector of two shapes. Figure 1c
shows the eigenvector corresponding to the second non-
zero eigenvector and the blue sets of points on Figure 1b
present the second sets of feature points. This approach can
provide us three sets of points that are used for matching the
eigenvectors of different shapes. When needed, more nodal
sets can be used. Using these feature points for mapping the
eigenvectors, instead of using all of the points, reduces the
computational time considerably.

Fig. 1: (a) The eigenvector corresponds to the first non-zero
eigenvalue. (b) The three nodal sets. The red set shows the
static points for eigenvector corresponding to the first non-
zero eigenvalue. The blue sets show the static points for
eigenvectors corresponding to the second non-zero eigen-
value. (c) The eigenvector corresponds to the second non-
zero eigenvalue.
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2.2 Spectral Registration Using Eigenvector and
Eigenvalue

To register two surfaces, the challenge is how to minimize
the difference between the two shapes in the spectral space.
In order to align two surfaces using the LB spectral space,
we aim to maximize the similarity between both eigenvalues
and eigenvectors of the LB operator of the surfaces.

As a result of non-isometric deformation, the eigenval-
ues and eigenvectors of the shape dramatically change. On
a compact closed manifold M with Riemannian metric g,
we define shape deformation as a time variant positive
scale function ω(t) : M → R+ such that gωij = ωgij and
dσω = ωdσ, where ω(t) is non-negative and continuously
differentiable.

To increase the similarity between eigenvectors, we try
to minimize the distance of the eigenvectors on the feature
points. Therefore, we need a distance function in the embed-
ding space. We employ the distance measurment that was
proposed in [22]. In order to find the optimal scale function
ω for two surfaces (N,ωg1) and (M, g2), the energy function
is defined as follows:

E(ω,Φ1,Φ2) =

∫
N

[
dΦ2

Φ1
(x,M)

]2
dN (x)

+

∫
M

[
dΦ2

Φ1
(N, y)

]2
dM (y),

(4)

where dΦ2

Φ1
(x,M) and dΦ2

Φ1
(N, y) are defined as follows:

dΦ2

Φ1
(x,M) = infy∈M ‖ IΦ1

N (x)− IΦ2

M (y) ‖2,∀x ∈ N,
dΦ2

Φ1
(N, y) = infx∈N ‖ IΦ1

N (x)− IΦ2

M (y) ‖2,∀y ∈M,
(5)

and ω is the scale function that applies on N . Φ1 and Φ2

are the eigenvector basis for LB embedding of (N,ωg1) and
(M, g2). In this work, we focus on mapping one manifold
to another and aim to find such a metric optimization.
Therefore, we assume that the manifold M is fixed and N
changes using the scale function ω to minimize the distance
between M and ωN on those feature points.

To increase the similarity of eigenvalues between two
manifoldsN andM , we employ the theorem proved in [21],
i.e., λn(t) is piecewise analytic and, at any regular point, the
t-derivative of λn(t) is given by:

λ̇n = −λn
∫
M
ω̇fn

2dσ. (6)

This theorem shows that the spectrum is smooth and ana-
lytical to non-isometric local scale deformation.

3 NUMERICAL OPTIMIZATION USING SPECTRAL
VARIATION

In this section, we will detail a discrete algorithm for the
alignment of non-isometrically deformed shapes through
the variation of eigenvalues and eigenvectors. Consider two
closed manifolds, N and M with the eigenvalues of λ1 and
λ2, and eigenvector basis of Φ1 and Φ2. These two manifolds
are represented with discrete triangle meshes. We use their
first k1 non-zero eigenvalues and eigenvectors to align two
surfaces. As we mentioned before, the deformation is not
isometric; thus the first k1 eigenvalues and eigenvectors of
these two surfaces are not the same. In order to align the

first k1 eigenvalues of N to those of M , a continuous scale
diagonal matrix Ω(t) is applied on N . Ω is an m by m
matrix, where m is number of vertices on N . The element
Ωii at the diagonal is a scale factor defined on each vertex on
N and will introduce a variation and alignment from N to
M . It is a non-negative, continuously differentiable matrix.

To solve the numerical problem, we use the time interval
of t and we divide the time interval of t ∈ [0, 1] into K
steps which we will index them as q. For each step of q,
we solve an optimization equation to increase the similarity
of eigenvalues and eigenvectors of ΩN toward those of
manifold M . At the beginning, t = 0, the eigenvectors and
eigenvalues are Φ1 and λ1 and Ω(0) = I . When t reaches
1, the eigenvalues and eigenvectors will be λ2 and Φ2. In
order to do that, we assume that the eigenvalues of N vary
linearly toward those of M . This can be represented as:

λn(t) = (1− t)λ1,n + tλ2,n, t ∈ [0, 1]. (7)

where n is the index of eigenvalues. Therefore, at any
regular time of t, the derivative of λ is constant and can
be calculated as:

λ̇n(t) = λ2,n − λ1,n, t ∈ [0, 1]. (8)

For mapping of eigenvectors, in each step we minimize
the distance function described in the Equation 4 between
ΩN and M . The following will explain the details how to
calculate the optimization function to minimize the distance
between eigenvalues and eigenvectors in each step.

3.1 Eigenvector Optimization Equation

To minimize the energy function in Equation 4, we need to
calculate the distance between two manifolds using Equa-
tion 5. In order to do that, we compute the k1 eigenvalues
and eigenvectors for both manifolds using Equation 2. One
of the concerns about the calculating the eigenvectors is the
sign ambiguity. This means that either fn or −fn can be
the eigenvector of a specific eigenvalue. For a target surface
M , we fix the eigenvectors by picking random signs for Φ2.
Then, we calculate the feature points as described before.

For the surface N , we start with Ω = 1 and in each step
we update the surface using the optimized Ω to minimize
the energy function E. At each step, we first calculate the
k1 eigenvalues and eigenvectors of the updated surface
N using Equation 2. Then we calculate the three sets of
feature points using the eigenvectors as explained before.
We need to find the corresponding feature sets on two
surfaces for solving the sign ambiguity of eigenvectors. As
shown in Figure 1a, there is one nodal set for the eigenvector
corresponding to the first non-zero eigenvalue. Therefore,
these sets are matched on two surfaces. For the other two
nodal sets, we calculate the corresponding sets using their
signs on the eigenvector corresponding to the first non-zero
eigenvalue. We first calculate and determine the sign of this
eigenvector using the histogram of the positive and negative
eigenvector values for both surfaces. As we mentioned
before, the second sets of the nodal nodes are parallel to the
first set. Also, the sets of nodes are at the opposite sides of
the first nodal set. Therefore, each set of nodes has a different
sign value on the first eigenvector. By knowing the sign of
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the first eigenvector, we can categorize and determine the
corresponding sets of nodes for the second feature sets.

By detecting the corresponding feature sets in each step,
we find the nearest feature points of surface N to the
feature points of M that minimize the distance Equation 5.
To achieve this, we consider all combinations of signs for
k1 eigenvectors for surface N to minimize the distance
equation. After finding the corresponding points and the
signs, the points are employed to generate matrix C as
the nearest feature points mapping from IΦ1

N to IΦ2

M . This
mapping can be presented as Id(BV1) = CV2 where V1 and
V2 are the vectors that present the vertices of surfaces N and
M , respectively. Matrix B is a diagonal matrix of the size of
V1 in which the diagonal elements for the feature points
are 1, and 0 otherwise. Matrix C has value of 1 only for
the feature points; therefore, the projection relation Id can
present a linear interpolation mapping from feature points
of surface N to M . Using this mapping, we can write the
energy function, Equation 4, in a discrete numerical form
as:

E =
k1∑
n=1

(
1

S(N)

(
Bf1,n√
λ1,n

−Cf2,n√
λ2,n

)T
Ω

(
Bf1,n√
λ1,n

−Cf2,n√
λ2,n

))
,

(9)
where S(N) is the surface area of N and Ω is the scale
function. In this work, because we change the surface N
toward surface M and surface M does not change in each
step, the second part of the Equation 4 is zero and only
the first part is used to calculate the numerical equation.
Considering that in each iteration the corresponding feature
points are calculated and the eigenvalues do not change,
the derivative of E with respect to time can be defined as
follows:

Ef =
∂E

∂t
=

k1∑
n=1

(
1

S(N)
DsTn Ω̇ Dsn

)
, (10)

where Dsn =

(
Bf1,n√
λ1,n

− Cf2,n√
λ2,n

)
and Ω̇ = ∂Ω

∂t . Because Ω

is a diagonal matrix, we extract the diagonal elements as a
vector vΩ and Equation 10 can be rewritten as:

Ef =
k1∑
n=1

(
1

S(N)
((Dsn)2)TvΩ̇

)
. (11)

Using this equation, we update the eigenvectors through
the numerical optimization of the gradient of the energy
function in each step.

3.2 Eigenvalue Optimization Equation

In order to increase the similarity of two eigenvalues of λ1

and λ2, we employ the method in [21]. Considering the scale
function applies on the surface N , the weighted generalized
spectral problem in Equation 2 can be presented as follows:

Wfn = λnΩSfn, (12)

where λn and fn are n-th corresponding solution. Using
this equation, Equation 6 can be transformed in the discrete
form:

λ̇n = −λnfTn Ω̇Sfn. (13)

λn is piecewise analytic. Considering that we only apply
Ω on the surface N by combining Equations 8 and 13, the
derivative of each λi(t) leads to the following equation:

−λ1,n(t)f1,n(t)
T
Ω̇SNf1,n(t) = λ2,n − λ1,n, t ∈ [0, 1], (14)

where SN is a diagonal matrix that each element shows
the Voronoi region for the corresponding vertex. Although
the time derivative of Ω can be calculated in Equation 14,
solving this equation is not straightforward. We need to
transform the individual integration equation into a linear
system. We achieve this by extracting the diagonals as
vectors vΩ and vSN

, and then applying Hadamard product
to Equation 14. Thus, this equation can be rewritten in a
linear form as follows:

(vSN
◦ f1,n ◦ f1,n)T · vΩ̇ =

λ1,n − λ2,n

λ1,n(t)
, t ∈ [0, 1]. (15)

Note that, as the first k1 eigenvalues are going to be aligned,
we can get k1 independent equations, which lead to a linear
system as follows:

a · vΩ̇ = b, (16)

where a is a row stack of (vSN
◦ f1,n ◦ f1,n)T with k1 rows

and b is the right side of Equation 15. Considering that we
use the first k1 eigenvalues for this work and that practically
k1 is much less than the number of nodes in the mesh, the
system is underdetermined and has no unique solution.

We solve this by assuming that the scale factors dis-
tributed on N are smooth. On the discrete triangle mesh N ,
with the scale function vector vΩ, the smoothness energy of
E is define as:

Eλ =< vΩ + vΩ̇,LN · (vΩ + vΩ̇) >S, (17)

where LN can be calculated using Equation 1 for manifold
N . Because the scale vector applies to surface N only, this
equation only applies to surface N . Assuming that vΩ is
known at each time t, vΩ̇ is going to minimize the quadratic
smooth energy. Then it leads to the following equation:

Eλ = vT
Ω̇
·WN · vΩ̇ + 2zT · vΩ̇, (18)

where z = WNv·Ω. Through the combination of this energy
function and the energy function calculated for eigenvec-
tors, the distance between the eigenvalues and eigenvectors
of two surfaces can be minimized.

3.3 Energy Equation Integration

In order to increase the similarity of eigenvalues and eigen-
vectors of two surfaces, we integrate the energy function
calculated for both eigenvalues and eigenvectors in order to
find a scale matrix that minimizes the total energy function
as follows:

ET = Eλ + Ef =

vT
Ω̇
·WN · vΩ̇ + 2zT · vΩ̇ +

k1∑
n=1

(
1

S(N)
((Dsn)2)TvΩ̇

)
.

(19)
In order to preserve the physical availability, vΩ must

be bounded, i.e., the scale factor cannot be zero or negative;
and it cannot be infinite either. We denote a lower bound
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and an upper bound with hl,hu > 0, where hl and hu are
n dimensional constant vectors. vΩ̇ must satisfy:

hl ≤ vΩ + vΩ̇ ≤ hu. (20)

This inequality bound can be written into a matrix form:

G · vΩ̇ ≤ h, (21)

where G is a stack of identity matrices as:

G2n×n =

(
−In×n
In×n

)
, (22)

and h is a 2n dimensional vector as:

h2n×1 =

(
vΩ − hl
hu − vΩ

)
. (23)

The linear system (Equation 16), energy function (Equa-
tion 19), and constant bound (Equation 21) form a quadratic
programming problem at each time t. Assume the eigen-
values and eigenvectors are known at each time t, the
derivative of the scale matrix Ω̇ is the solution of this
problem. The result Ω̇(q) for each iteration can be used to
calculate Ω(q + 1) as follows:

Ω(q + 1) = Ω(q) +
1

K − q
Ω̇(q). (24)

After K steps, the desired Ω(K) will be achieved and two
manifolds are aligned. The summary of the algorithm can
be found in Algorithm 1. As shown, after K steps surface N
will be aligned to surface M and the correspondence can be
computed using the aligned eigenvectors.

Algorithm 1 Spectrum Alignment

Require: Closed 2D manifolds N and M , represented by
triangle meshes, and constant k1;

Ensure: Diagonal weight matrix Ω(q) on N , aligning first
k1 non-zero eigenvalues and corresponding eigenvec-
tors of feature points from N to M ;

1: Initialize Ω(0)← I, calculate matrices WN and SN , and
λ2,n, f2,n, λ1,n, and f1,n, for n = 1, 2, . . . , k1;

2: Compute the feature points for surfaces M .
3: while q < K do

a: Calculate λ1,n(q), f1,n(q), for n = 1, 2, . . . , k1 using
Equation 2 with Ω(q);
b: Calculate the feature points for surface Ω(q)N us-
ing f1,n(q); solve the eigenvector sign ambiguity; and
find the corresponding feature points between surfaces
Ω(q)N and M ;
c: Construct the quadratic programming problem using
Equations 16, 19, and 21;
d: Solve the quadratic programming problem to get Ω̇(q)
and calculate Ω(q + 1);
e: q ← q + 1;

4: end while
5: The correspondence of surface N and M can be com-

puted using the aligned eigenvectors.

4 EXPERIMENTS AND APPLICATIONS

The proposed algorithm and system are implemented using
Python and C++ on a 64-bit Linux platform. For visual-

(a) (b)

(c) (d)

Fig. 2: The result of mapping the original 3D object to the
synthetic one. (a) shows the original object. (b) is obtained
by generating a bump on the original surface. (c) and (d)
show the results of point-to-point mapping the original
surface (cyan) to the target one (yellow) from different
angles.

ization purposes, we employ MATLAB and VTK library in
Python. The experiments are conducted on a computer with
an Intel Core i7-3770 3.4 GHz CPU and 8 GB RAM. We apply
our algorithm to 2D manifolds, represented with triangle
meshes. We employ the approach in [37], [38] to generate
the uniform meshes. The number of vertices in those meshes
is about 3000 for most of the experiment data. Besides the
vertex number, there are two constants, i.e., K iteration
and the first k1 nonzero eigenvalues and eigenvectors to
be aligned. For our experiments we choose K = 10. This
number is sufficient to generate accurate results. We use
different k1 for different experiments. Depending on the
resolution that we need in our experiments, the number k1

may vary. The average computational time for 3000 nodes,
with k1 = 8 and K = 10, is around 12 seconds.

4.1 Experiments on Synthetic Data
4.1.1 Our Results
In order to evaluate our method, we manually make some
non-isometric deformations on the surface of the shape and
then we register the initial shape to the deformed one. In
these experiments, we use a Stanford bunny model and
make a non-isometric deformation on the surface and then
generate uniform triangle meshes on both surfaces. We em-
ploy the first 10 non-zero eigenvalues and the corresponding
eigenvectors to do the alignments. The processing time for
k1 = 10, K = 10, and 3000 mesh vertices is about 43
seconds. Note that, no correspondence information is used
in the experiments.

In the first experiment, we manually generate a bump
on the back of a bunny and align the original surface to the
deformed one. Figure 2 shows the original surface in cyan
and target surface in yellow. The location of the bump is
marked by a red circle. Figure 2c and 2d present the results
of point-to-point mapping of the surfaces from different
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(a) (b)

(c) (d)

Fig. 3: The result of mapping the original 3D object to the
synthetic one. (a) shows the original object. (b) is obtained
by generating an indentation on the original surface. (c) and
(d) show the results of point-to-point mapping the original
surface (cyan) to the target one (yellow) from different
angles.

angles. The original and targeted shapes are overlaid and
the arrows in the bump area show the deformation of each
vertex from the original to the targeted surface.

In the second experiment, we manually create an inden-
tation on the surface of a bunny and align the original sur-
face to the dent one. Figure 3a and 3b show the original and
the surface results of creating the non-isometric dent on the
surface, respectively. Figure 3c and 3d present the result of
point-to-point mapping of surfaces using our method. The
original and targeted shapes are overlaid and the arrows in
the bump area show the deformation of each vertex from
the original to the targeted surface. These results confirm
that our method can accurately detect and localize the non-
isometric deformation and find the corresponding points.

For more complex and challenging deformations, we
use a hammer model and create 2000 uniform meshes on
the surface. Then we create different non-isometric defor-
mations on the surface and align the original surface to
the deformed one. Figure 4 show the original hammer in
yellow color and target deformed hammers in the cyan
color. Figures 4c, 4f, 4i, and 4l show the results of aligning
the original surface to the deformed ones using our method.
The point-to-point alignments are demonstrated using the
arrows that connect the corresponding points on the original
and deformed surfaces. The original and target surfaces are
overlaid in these figures. These results conclude that our
method can detect the simple and complex non-isometric
deformations on the surface accurately.

4.1.2 Comparison to a Spatial-based Method

In order to further demonstrate the capabilities of our
method, we compare the results of our algorithm with the
ones from non-rigid Iterative Closest Point (ICP) algorithm.
ICP is introduced by Besl and Mckay in [39] and is one of

the popular approaches in spatial registration-based meth-
ods. In this approach, the initial transformation for global
matching is first estimated and then the closest points are
found by minimizing the distance between two shapes.
Therefore, using this method we first register the original
surface to the target one rigidly and then the corresponding
points between the rigidly registered original shape and the
target shape are calculated. For our method, we employ
the first 12 non-zero eigenvalues and the corresponding
eigenvectors for alignment purposes. The processing time
for 3000 vertices, k1 = 12 and 10 iterations is 118 seconds.

In order to compare two methods, we use a template hip-
pocampus and synthetically deformed the shape by bending
and stretching the shape from upper and lower sides. The
original and deformed surfaces are shown in Figures 5a and
5b, respectively, which exhibit global variation. Figure 5c
presents the overlay of the original and deformed shapes. As
can be seen, the top and the bottom parts of the surface are
stretched and the shape is bent in the middle part. Figure 5d
shows the result of performing ICP rigid registration on the
original shape to map it to the deformed shape. Comparing
Figures 5c and 5d, one can notice that the rigid ICP does not
match the shapes correctly, especially in the top and bottom
regions of the shapes. Figures 5e and 5f present the results
of our method and non-rigid ICP, and the arrows show the
displacement of each vertex on the surface. Because the ICP
method fails in the rigid registration stage, the correspond-
ing points calculated using non-rigid ICP do not reflect
the accurate deformation, especially in the top and bottom
region. On the other hand, because our method does not re-
quire pre-rigid registration to find the corresponding points,
this variation can be captured by our registration and map-
ping method accurately. These results justify the advantage
of our method over the rigid and non-rigid ICP method.
In order to demonstrate that our method can handle both
global and local deformation simultaneously, we create a
bump on the shape of Figure 5b as shown in Figure 5g.
Then we align the surface in Figure 5a to Figure 5g using
our method. Both global and local deformations (bump)
can be captured by our method as shown by arrows in
Figure 5h. Therefore, these results confirm that our method
can detect and localize the non-isometric deformation and
find the correspondence and their displacements resulted
from both global and local deformations.

4.1.3 Comparison to a Spectral-based Method
In order to compare our method with a similar spectral-
based technique, we employ an approach suggested by Shi
et al. in [22]. They proposed a method based on aligning the
eigenvectors of two surfaces via optimization of a conformal
metric on the surfaces. They employed the eigenvectors for
all the points of the surfaces therefore the computation is
very expensive.

In this experiment, we employ a template hippocampus
and create 1500 uniform vertices on the surface. Then,
similar to the previous section, we synthetically deform
the shape by bending and stretching the shape from upper
and lower sides. The bending and stretches are larger in
this experiment than in the previous one. Figures 6a and
6b show the original and synthetically deformed surfaces,
respectively. Figures 6c and 6d show the results of the
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Fig. 4: The result of mapping the original 3D hammers to the synthetic deformed ones. (a), (d), (g), and (j) show the original
hammers. (b), (e), (h), and (k) are obtained by generating non-isometric deformation on the original surface. (c), (f), (i), and
(l) show the results of point-to-point mapping the original surface (yellow) to the target one (cyan).

(h)(g)(f)(e)(d)(c)(b)(a)

Fig. 5: Comparison of our method with ICP method using synthetic data. (a) presents the original surface and (b) is obtained
by bending and stretching the shape from the upper and lower ends. (c) shows the result of mapping these two shapes. (d)
shows the result of ICP rigid registration result. The ICP method register the shape from one side and therefore this method
cannot generate accurate result for bending deformation. (e) and (f) present the results of point-to-point mapping from the
original surface to the deformed one using our method and ICP method, respectively. Because the result of non-rigid ICP
depends on rigid ICP, the result is not accurate. Our method can detect the deformation accurately. In order to show that
our method can handle both global and local deformation simultaneously, we make a bump on the deformed surface as
presented in (g). The result of mapping (a) to (g) is presented in (h).

(a) (b) (c) (d) (e)

Fig. 6: Comparison of our method with Shi et al.’s method [22] using synthetic data. (a) presents the original surface and
(b) is obtained by bending and stretching the shape from the upper and lower ends. (c) shows the result of Shi et al.’s
approach. The lower tip of the shape is not aligned correctly using Shi et al.’s method while our method can align all
the points accurately. (d) shows the result of mapping these two shapes using our method. (e) presents the color map
visualization of the corresponding points of the shapes using our method.

alignment using Shi et al.’s and our methods. As can be seen,
the bottom tip of the surface cannot be aligned correctly
using Shi et al.’s method but our method can align all the
points accurately.

In order to quantitatively evaluate the capabilities of
these methods in localizing the point-to-point correspon-

dence, we use the following metric:

A = 1−
∑m
i=1 |di − dOi |∑m
i=1 |dOi |

, (25)

where di is the distance between corresponding points cal-
culated using either methods, dOi is the known ground truth
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distance, m is the number of all nodes and i is the index
of nodes. The experiments demonstrate that the average
outcome for our method is 91.4% while it is 85.8% for Shi et
al.’s method. This number is 75.6% for ICP method. There-
fore, our method can find the point-to-point correspondence
better than the other two methods for complex deformation.
In this experiment we use 10 iterations and 12 non-zero
eigenvalues and eigenvectors to do the alignments. For 1500
mesh vertices, our method takes 67 seconds while Shi et
al.’s approach takes 94 minutes. In [22], they mentioned that
their execution time for 1000 triangle faces with approxi-
mately 500 vertices, is 20 minutes.

TABLE 1: Comparison among our method, Shi et al.’s
method and non-rigid ICP method.

Capabilities Our Method Shi et al.’s Method Non-rigid ICP
No Rigid Registration X X

Local Deformation X X X
Average Accuracy: A 91.4% 85.8% 75.6%

Computation < 120s > 20m > 60s

Table 1 demonstrates the comparison between our
method, Shi et al.’s method, and non-rigid ICP method.
As mentioned before, non-rigid ICP method requires rigid
registration before aligning two surfaces while Shi et al.’s
and our methods do not have this requirement. All the
methods can localize the deformation of the surface but
our method has the best average accuracy based on metric
defined in Equation 25. The computational time for our
method is considerably less than Shi et al.’s method and
similar to non-rigid ICP. Therefore, our method has the best
features to align two surfaces.

4.2 Applications on Real Patient Imaging Data
4.2.1 Alzheimer Data
Alzheimer disease (AD) is a brain mis-functionality that
is caused by the loss of neurons and neural volume. Hip-
pocampus is vulnerable to damage in the early stage of
Alzheimer. Volumetric longitudinal studies using MR im-
ages show hippocampal atrophy during time in comparison
to healthy cases. In this study we show the point-to-point
deformation for an Alzheimer case. We employ 10 AD
and 10 healthy cases, which have longitudinal study for
one year to track and compare the deformation of hip-
pocampi. The cases are downloaded from the hippocampal
study from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database (adni.loni.usc.edu) and are segmented
using FreeSurfer software. Then, the 3D objects and meshes
with 3000 vertices are generated. In this study, we use the
first 10 eigenvectors to align the surfaces. Figures 7a and
7b show a sample of AD case for the baseline and after
one year. The deformation in the tail part can be detected
visually. The deformation mapping is shown by using the
blue arrows in Figure 7c . It needs to be mentioned that
the deformation mapping is down-sampled by five in order
to better visualize the results. As can be seen, our method
can detect the deformation accurately. Figure 7d shows the
6th eigenvector before and after alignment. Columns A and
B show the eigenvector for the baseline surface before and
after alignment, respectively. Column C shows the targeted

surface eigenvector. It is noted that our method can match
and align the eigenvectors. The color map shows the scaled
value of the eigenvector.

In order to show the variation of eigenvalues of the
manifolds before and after alignment, we list the 2nd to 10th
non-zero eigenvalues of baseline hippocampus (before and
after mapping) and hippocampus after one year in Table 2.
The eigenvalues are normalized by the first nonzero one to
remove the scale factor. It can be seen that after applying
the spectrum alignment algorithm, the eigenvalues of the
source manifold have changed to well align with the target
ones.

TABLE 2: The result of aligning eigenvalues from the base-
line hippocampus to one after one year (target) using the
same case as in Figure 7.

Manifold λi/λ1, i ∈ [2, 10]

Baseline 3.40, 7.39, 10.66, 15.36, 17.04, 21.50, 23.13, 24.94, 29.77
Target 4.17, 8.65, 11.42, 16.23, 18.97, 23.18, 26.19, 30.53, 32.38

Aligned 4.17, 8.65, 11.42, 16.23 , 18.96, 23.17, 26.19, 30.49, 32.39

4.2.2 Cardiac Data
We use the Sunnybrook Cardiac Data [40] for this experi-
ment. The data is acquired from the 3D left ventricle during
cardiac cycles from end diastolic to end systolic, and then,
back to end diastolic cycle. For this study, we use five
cases for each category: heart failure with infarction, heart
failure without infarction, left ventricle (LV) hypertrophy,
and healthy. Meshes with 5000 vertices are generated. 10
non-zero eigenvalues and the corresponding eigenvectors
are used for alignment. We map the surface for the end
diastolic (first time point) to all other 19 time points. Then,
the mean averages of the displacements for all the nodes
are calculated and used to generate a plot of surface dis-
placement for 19 different time points. Figure 8a shows the
result of mapping these surfaces using our method and
the mean average plot for a sample case. The first shape
close to the origin of the axes is the diastolic shape and the
rest of the shapes are the target ones. As can be seen, the
results follow the heart beating pattern. Figure 8b shows
the overlay of the first time point surface (cyan) to the
7th one (yellow) which has the most mean displacement
according to the average plot. The results of mapping these
two surfaces are also presented in this figure by using
arrows, which connect the corresponding points and show
the point-to-point deformation mapping. One can see that
our method can detect the contraction and the tangential
turning deformation of the heart.

This method can be used in different applications in
cardiac study. The first application is longitudinal study of
a subject. In this study, the 3D images of the subject are
generated for more than one heart beating full cycles. Using
these models, the deformation plot for mean average of
displacement can be generated. Physicians usually look at
more than one cycles to exam the abnormality of the heart.
By using our method, the abnormality can be detected via
the mean average plot and then using the point-to-point
deformation mapping to find out the specific abnormal time
points. Therefore, the abnormal area of the ventricle may
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(a) (b) (c) (d)

Fig. 7: (a) shows the baseline hippocampus and (b) shows the hippocampus for the same subject after one year. (c) presents
the result of mapping the baseline hippocampus to the one after one year. (d) presents the 6th eigenvector before and
after mapping. Column A shows the eigenvector before alignment and column B shows the eigenvector after alignment.
Column C shows the 6th eigenvector for the target surface.

(a)

(b)

Fig. 8: (a) The result of mapping the first time point shape
to all other shapes and then computing the mean average
of the distance. The yellow surface is the left ventricle
in diastolic state. The other shapes shows the contracted
left ventricle toward systolic state overlaid on the yellow
surface. (b) The result of mapping the first time point
surface (cyan) to the 7th one (yellow) which has the most
deformation according to the plot in (a).

be detected. Figure 9a shows three heart beating cycles and
the one time point which is marked by a red circle in the
2nd cycle showing abnormality according to its location.
As can be seen, the abnormality can be detected using our
method. We detect this abnormality by creating a bump
(Figure 9c) on a heart surface (Figure 9b). Then, our method
can generate the displacement color map and the abnormal
region can be also located (Figure 9d).

The second application is the cross-subject analysis
through temporal alignment. The same time point of a heart

(a)

(b) (c) (d)

Fig. 9: The longitudinal study for a subject using our
method. By studying more than one cycle, the abnormal
beat can be detected using our method and the abnormal
area of the left ventricle can be identified. (a) shows 3 heart
beat cycles and the abnormal time point is marked by a red
circle. We create this abnormality by creating a bump on
a heart surface. (b) shows the original heart. (c) shows the
deformed surface. The deformed area is marked by a red
circle. (d) shows the displacement color map generated by
our method to detect the abnormal region.

beat cycle for two different subjects can be identified. For
instance, in one subject, the largest heart contraction may
happen at the 7th time point, but in another subject, the
largest heart contraction may be detected in 8th time point.
Using our method, different time points in different subjects
can be aligned according to the heart beating cycle through
temporal alignment. Figure 10 shows this procedure. Using
this alignment, we can align different healthy cases and
then use the aligned mean average mapping to generate a
standard mean average mapping. This mapping can be used
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Fig. 10: The blue and green curves show the mean average
mappings for two different cases. The black dashed curve
shows the blue curve after alignment.

to compare with normal and patient cases in order to cate-
gorize the abnormal cases from the normal ones by using
the difference indicator between this mapping and a target
one. In Figure 11, the red plot shows the standard mean
average plot generated by calculating the average of mean
average mappings from temporally aligned five healthy
cases. Figure 11a shows a healthy case in a blue curve,
as compared with the standard mean average mapping.
Figure 11b shows a diseased case in a green curve when
temporally aligned to the standard mean average mapping
and Figure 11c shows a LV hypertrophy case in a black
curve. Yellow area shows the difference between two curves.
As can be seen, the difference area in healthy case is much
less than that in the patient cases. Using difference area,
one can accurately categorize healthy cases from patient
cases. Figures 11d, 11e, and 11f show the displacement
mapping of the left ventricle from the diastolic to systolic
state for normal, diseased, and hypertrophy cases showed
in Figures 11a, 11b, and 11c, respectively.

4.3 Application on Hand Data
In order to demonstrate that our method can be used on
non-medical applications as well, we use data of different
hand gestures and create 3000 uniform vertices on the
surfaces. Figures 12a, 12b, and 12c show different gestures of
the hand. We employ the shape in Figure 12a as the original
surface and then align it to the shapes in Figures 12b,
and 12c. Figures 12d and 12e show the results of this align-
ment using our method. The original and target surfaces are
overlaid and the point-to-point alignment is shown using
the arrows that connect the corresponding points. As can be
seen, different parts of the hand are aligned correctly and
our method can detect the point-to-point correspondence
accurately.

5 CONCLUSION AND DISCUSSION

In this paper, we have introduced a new method based on
shape spectrum to find the point-to-point correspondence
between two surfaces undergoing global and local defor-
mations. We employ both eigenvalues and eigenvectors of
the surfaces in the alignment. Our method can localize
the non-isometric deformation of the surface and find the
displacement mapping for all the vertices. Because we use
certain feature points instead of all the vertices to align the

eigenvectors, our method is considerably more efficient than
existing methods. We have applied our method to both syn-
thetic and real data, and the results confirm the advantage
and accuracy of our method. We have also compared our
method with non-rigid ICP method and a similar spectrum-
based method. The results show that our method has the
best accuracy. In terms of computational time, our method
is considerably faster than previous spectrum-based method
and similar performance as non-rigid ICP method.

Note that, for searching for proper eigenvectors, in ad-
dition to sign ambiguity, there are some cases that the order
of the eigenvectors switches. In addition, by using large
number of eigenvectors, numerically it is possible for near
multiplicities of eigenvectors to cause the eigen-spaces to
split in different directions [22]. In such cases, the eigen-
vectors matching becomes difficult. In our algorithm, we
mainly focus on resolving the sign ambiguities. The order
switching of eigenvectors and detection of high dimensional
multiple eigenvectors will be our future research work.
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(a) (b) (c)

(d) (e) (f)

Fig. 11: The result of comparing the mean average of five temporally aligned healthy cases, to a healthy and two patient
cases. In all plots, the red curves show the average plot generated by calculating the average of five aligned healthy cases’
mean average mappings. (a) The blue curve shows a healthy case. (b) The green curve shows a diseased heart case. (c)
The black curve shows a hypertrophy case. One can use the difference between two curves (yellow area) to accurately
distinguish the healthy from patient cases. (d), (e), and (f) show the displacement mapping of the left ventricle from the
diastolic to systolic state for normal, diseased, and hypertrophy cases showed in (a), (b), and (c), respectively.
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Fig. 12: The results of aligning different hand gestures. (a) shows the original surface. (b), and (c) show the target surfaces.
(d) and (e) show the results of aligning original surface to the surfaces demonstrated in (b) and (c) respectively. The results
show that our method can detect the point-to-point correspondence between two surfaces correctly.
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