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Abstract—Due to the limited number of projections at each 

phase, the image quality of a four-dimensional cone-beam CT 

(4D-CBCT) is often degraded, which decreases the accuracy of 

subsequent motion modeling. Various strategies have been 

proposed to enhance the image quality of 4D-CBCT. One of the 

promising methods is the simultaneous motion estimation and 

image reconstruction (SMEIR) approach. However, one 

drawback of SMEIR is the long computational time. The objective 

of this work is to enhance the computational speed of the SMEIR 

algorithm using feature-based tetrahedral meshing and 

GPU-based parallelization. 

 
Index Terms—4D-CBCT, motion-compensated image 

reconstruction, feature-based tetrahedral mesh, GPU 

 

I.  INTRODUCTION 

 

here are growing interests in using four-dimensional 

cone-beam computed tomography (4D-CBCT) for 

managing respiratory motion involves sites, such as lung and 

liver tumors, in radiation therapy. Among various 

reconstruction algorithms for 4D-CBCT, the simultaneous 

motion estimation and image reconstruction (SMEIR) approach 

has shown promising results [1]. The SMEIR algorithm 

performs model-based image reconstruction and obtains the 

updated motion model simultaneously. The SMEIR algorithm 

consists of two alternating steps: model-based image 

reconstruction and motion model estimation. The model-based 

image reconstruction can reconstruct a motion-compensated 

primary CBCT (m-pCBCT) at any phase by using the 

projections from all of the phases with explicit consideration of 

the deformable motion between different phases. Instead of 

utilizing the pre-determined motion model, the updated motion 

is obtained through matching the forward projection of the 

deformed m-pCBCT and measured projections of other phases 

of 4D-CBCT. In the original SMEIR algorithm, voxel-based 

deformation fields was employed, where large number of 

unknowns need to be estimated and the computational time is 

extremely long. In this work, we develop a feature-based mesh 

technique for SMEIR and a GPU-based parallel algorithm to 

further improve the efficiency and accuracy of the SMEIR 

approach.  

Finite element method (FEM) is a numerical technique for 

finding approximate solutions to boundary value problems for 

differential equations. FEM is best understood from its 

practical application, for instance, mesh discretization of a 

continuous domain into a set of discrete sub-domains. FEM has 

been widely used in deformation estimation [2, 3]. Usually, 

FEM is exploited to achieve two important advantageous 

aspects: 1) to improve the efficiency of the deformation vector 

fields (DVF) estimation process due to a small number of 

sampling points compared to voxel-based sampling methods; 

and 2) to provide the smoothness of the DVF due to the 

smoothness constraint between elements and the interpolation 

within one element. The quality of the geometric discretization 

is crucial for the effectiveness of the deformation estimation 

applications. Generally speaking, according to the geometric 

information, meshes can be divided into two categories: surface 

mesh and volume mesh. For surface mesh methods [3-5], 

during the registration process, the object surface is directly 

tracked, but the accuracy of estimated deformation degrades for 

locations further away from the surface. For volume mesh 

methods [6-9], for instance, the uniform grid mesh is often 

employed for simplicity; however, the vertex positions and 

connectivities of this kind of mesh are irrelevant to image 

features or the places where the deformation mostly occurs. 

Therefore, it is necessary to generate meshes according to 

image features.  

The goal of this work is to incorporate a feature-based 

meshing method into the SMEIR algorithm to improve its 

computational efficiency and motion estimation accuracy. 

When iteratively reconstructing a sequence of 3D volumetric 

images, i.e. a 4D volumetric image, the number of sampling 

points is critical for the computation. A large number of 

sampling points could lead to a very slow computational speed, 

while a limited number of points with uniform distribution 

could miss some important image features and make the DVF 

estimation less accurate. In our proposed method, a special 

FEM system is developed to automatically generate high 

quality adaptive meshes conforming to the image features for 

the whole volume without user’s manual segmentation. This 

system allows for more sampling points placed in important 

regions (at organ/tissue/body boundaries or highly non-linear 

image intensity variation areas); while fewer sampling points 

are placed within homogeneous or linear image intensity 

variation regions. In this way, boundaries and other important 

features can be directly represented by the displacements of the 

sampling points or represented by smaller-sized tetrahedrons, 

rather than interpolating from a regular grid or a larger-sized 

tetrahedron in the volume mesh. As a result, the deformation 

can be controlled more precisely. 

 

II.  METHODS  

 

Fig. 1 illustrates a flow chart of the proposed mesh-based 4D 

CBCT reconstruction technique. 

This paper mainly focuses on: feature-based mesh generation, 

motion-compensated CBCT image reconstruction, updated 

motion model estimation, and GPU-based parallel acceleration, 

which are discussed in the following sections.   

A. Feature-based mesh generation 

Fig. 2 illustrates the feature-based mesh generation on a set 

of torso images of a digital phantom 4D NCAT [10]. In the 

feature-based mesh generation, the first step is to design a 

T 
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density field to match the volume image features. Original 

images are pre-analyzed using a Laplacian operator (searching 

for zero crossings in the second derivative of the image to find 

edges) to extract features including contour edges and 

boundaries between organs and tissues, which are regions of 

highly non-linear intensity variation. When the feature edges of 

the volume image are obtained, a density field could be 

calculated without manual segmentation (Fig. 2 (b)). 
 

 
Fig.2 Demonstration of the feature-based mesh generation on a digital 

4D NCAT phantom. (a) The original image at phase 0; (b) density field 

based on extracted feature edges; (c) boundary meshes well preserved 

the body surface; (d) a 2D view of the interior meshes with 

color-mapping. 

 

After designing the density field, a binary image is computed 

from the original image by setting “one” inside of the human 

anatomy and “zero” outside to constrain the vertex positions 

inside or on the body during mesh vertices optimization. Then, 

the mesh vertices are automatically computed by particle-based 

meshing method [11]. The regions of highly non-linear 

intensity variation are densely positioned by vertices, while 

regions of constant or linear intensity variation are assigned 

fewer vertices. Following this process, vertex locations are 

conforming to the density field as illustrated in Fig. 2(b). Then 

volume meshes (tetrahedrons) are created based on the 

Delaunay triangulation of the vertices. More details about the 

algorithm of this mesh generation are mentioned in [11]. As a 

result, meshes corresponding to boundaries between organs and 

tissues are denser. The color-coded tetrahedrons of the 

generated feature-based mesh in Fig. 2 (c), (d) illustrate that the 

tetrahedral volumes are well conforming to the desired density 

defined by the features of the given image as well as the body 

surface. Since most deformations occur around the boundaries 

between organs and tissues, edges of contours, it is desirable to 

place more vertices (or sampling points) at features, while 

fewer vertices in non-feature regions. In this way, if DVF is 

specified to each mesh vertex (or sampling point), the 

boundaries and other important features can be directly 

represented by the displacements of sampling points or 

represented by smaller-sized tetrahedrons, rather than 

interpolating through four vertices of one larger-sized 

tetrahedron. Then the deformation can be diffused from the 

mesh vertices to each voxel of the volume more accurately and 

smoothly via interpolation as follows: 

  INT( ),D W  

where W denotes the DVF specified on mesh vertices, and D  

denotes the DVF specified on voxels. INT denotes the 

interpolation calculation.   

B. Motion-compensated CBCT image reconstruction 

The SMEIR algorithm consists of two alternating steps: 

motion-based image reconstruction and motion model 

estimation. After meshing generation, we use a 

motion-compensated reconstruction method to obtain a 

reference phase 0 for 4D-CBCT [1].  

Suppose there are totally T phases in a 4D-CBCT, 

{ | 0,..., 1}t t T  P p denotes the projections for all phases, 

and { | 0,..., 1}t t T  μ μ denotes attenuation coefficients for 

all phases. The mathematical relationship between 
t

p and 
t
μ

can be represented as follows:                 

 

where A is the projection matrix. The element aij of the matrix A 

is the weight of voxel j in 
t
μ contributed to the pixel i in

t
p , i.e. 

the intersection length of projection ray i with voxel j, 

calculated by the ray tracing method [12].  

 Once the reference phase 0 is known and a motion model is 

available, the other phases [1,…, T-1] of the 4D-CBCT can be 

described as: 

 

where 
0 tD 

can be considered as a voxel-based motion model 

computed from the interpolation of the DVF specified by the 

mesh model, and here it is the deformation matrix to transform 

4D-CBCT from phase 0 to any phase t, t∈[1,…, T-1].   

Now Eq. (2) can be rewritten according to phase 0 of the 

4D-CBCT as follows: 

 

Eq. (4) shows that the projection measurements from all 

phases of a 4D-CBCT can be contributed to reconstruct the 

(1) 

(2) 

(3) 

(4) 

,t tAp μ

0 0 0 0INT( ) ,t t tD W  μ μ μ

0 0.t tAD p μ

Fig.1 Flow chart of the proposed mesh-based 4D CBCT 

reconstruction method. 
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reference image at phase 0 of a 4D-CBCT, leading to an 

m-pCBCT. Other phases of 4D-CBCT can be computed 

according to Eq. (3) based on phase 0 with motion models. In 

this paper, we use a modified simultaneous algebraic 

reconstruction technique (MSART) [1] to reconstruct the 

reference image at phase 0. In the MSART algorithm, the voxel 

values are updated iteratively as: 

 

 

 

 

 

 
,( ) 0 0,( )

, ,t k t k

n j n j

j

d   

where k is the iterative step, and λ is the relaxation factor which 

is set as 1.0 in our experiments. Eq. (6) describes the forward 

deformation that transforms 4D-CBCT from phase 0 to phase t, 

and n is voxel index at phase t. In Eq. (6), 
0

,

t

j nd 
denotes the 

element of the deformation matrix
0 tD 

. In Eq. (5), the second 

term defines the inverse deformation that deforms the error 

image determined by projections at phase t to update the 

4D-CBCT at phase 0. 
0

,

t

j nd 
denotes the element of the inverse 

deformation matrix 
0tD 

. The DVF results of demons 

registration [13, 14] between the total variation (TV) 

minimization [15, 16] reconstructed 4D-CBCT at other phases 

and phase 0 were used as DVF initials for m-pCBCT 

reconstruction. After MSART reconstruction, the TV of the 

reconstructed m-pCBCT is minimized by the standard steepest 

descent method [1] to suppress the reconstructed image noise.    

C. Updated motion model estimation 

In this framework, the updated motion model can be 

obtained by matching the 4D-CBCT projection images at each 

phase with the corresponding forward projections of the 

deformed m-pCBCT. 4D-CBCT at phase 0 (
0
μ ) is obtained by 

the motion-compensated CBCT reconstruction algorithm as 

described in the previous section. Due to the DVF is defined at 

mesh vertices as shown in Eq. (1), Eq. (4) can be rewritten as: 

 

 

where x denotes the coordinate vector of 4D-CBCT at phase t. 

The DVF
0 tw can be computed by minimizing the energy 

function f, which includes two terms: the data fidelity between 

the two images and the regularization used to achieve 

smoothness constraint of the DVF: 

 

 

where β is a parameter that controls the tradeoff between the 

data fidelity and the smoothness constraint of the DVF. 
0( )tL 

w  is the smoothness constraint term defined as:  

 

 

 

where
0( )tL 

w  is a summation of the square of Graph 

Laplacian operations [17] on the DVF (including three 

components: d = 1, 2, 3) over every vertex except those on the 

mesh external borders. Nv is the total number of the mesh 

vertices. N(a) is the set of one-ring neighboring vertices (b) of 

vertex a. |N(a)| is the size of set N(a).  

The total energy function considering all T phases is: 

2

1
2

0 0 0

0

( ) ( INT( )) ( ) ,
T

t t t

l
t

f A L


 



    
  W p μ x w w  

where 0{ | 0,..., 1}t t T  W w . L-BFGS [18] (a 

quasi-Newton algorithm) optimization method is used to 

minimize f and obtain the optimized DVF W. For each iteration 

of L-BFGS optimization, the energy f and its gradient 
f

W
are 

updated. The parameter β is set at 1.0 in the digital phantom 

study in this paper. Ten total iterations are performed during the 

interleaved optimization after each MSART and TV 

minimization step.  

D. GPU-based parallel acceleration 

The entire process of this 4D-CBCT reconstruction method 

is implemented on GPU. The GPU card used in our 

experiments is an NVIDIA Tesla K40c with 12GB GDDR5 

video memory. It has 2,880 CUDA cores utilizing such a GPU 

card with tremendous parallel computing ability that can 

significantly increase the computational efficiency. There are 

two time-consuming processes during the reconstruction. One 

is the projection generation in the total energy computation, and 

the other is the gradient computation of the total energy. It is 

straightforward to accomplish the ray tracing algorithm in 

parallel computation. For example, each pixel intensity of the 

projection is determined by accumulating all of the weighted 

voxel intensities through which one ray goes, i.e. integral of the 

intersection lengths of one projection ray going through voxels. 

This computation process is highly independent between each 

ray line. In this case, different GPU threads can compute each 

ray line simultaneously without conflict. Furthermore, because 

the projections at different phases can be all independently 

computed at the same time, in this case, the computation is fully 

parallelly calculated on GPU. The gradient computation of the 

total energy can be parallelly computed on GPU with the 

similar idea.  

 

III. RESULTS  

 

   A 4D NCAT digital phantom was used to test the proposed 

mesh-based image reconstruction algorithm. Feature-based 

tetrahedral mesh is created on about 1,000 vertices based on the 

TV minimization result of 4D-CBCT at phase 0. In this study, 

ten breathing phases of the NCAT phantom were generated 

with a breathing period of 4 s. The maximum diaphragm 

motion is 20 mm and the maximum chest anterior–posterior 

motion is 12 mm during the respiration. A spherical 3D tumor 

with diameter of 10 mm was also simulated and is indicated by 

an arrow as shown in Fig. 3. The dimensions of the phantom 

were 256 × 256 × 150 with voxel size of 1 × 1 × 1 mm3. 

Projections of ten phases of 4D-CBCT were generated using 

ray-tracing algorithm [12]. The dimensions of each projection 

were 300 × 200 with detector pixel size of 1 × 1 mm2. 20 
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projections with noise model [19] were simulated for each 

phase of 4D-CBCT and were evenly distributed over 360◦. 

Fig. 3 shows images of the 4D NCAT phantom at the 

end-expiration phase. Fig. 3 (a) is the target image at phase 4, 

and (b) is the reconstructed image results by the proposed 

method; (c) shows the horizontal profiles through the center of 

coronal view images, which further illustrate the performance 

of our image reconstruction strategy. Not only are view aliasing 

artifacts suppressed, but the edges are also well-preserved for 

both bone structures and inside of the lung. Furthermore, from 

the image and profile, it can be clearly observed that the tumor 

position can be well captured as well. 

 
Fig. 3 Demonstration of 4D NCAT results. (a) Target image (Phase 4); 

(b) reconstructed image by the proposed method; (c) horizontal 

profiles through the center of coronal view images of (indicated by a 

read dashed line). The arrow indicates the tumor position. 

 

TABLE 1 shows the timing information in each step per 

iteration during the optimization in the proposed GPU-based 

4D CBCT reconstruction method. It is noted that the meshing 

generation step does not show in the table, since it only needs to 

compute once before motion compensated image 

reconstruction and DVF optimization iterations. In our 

phantom data, it needs 30 s for the mesh generation.   

 
TABLE 1 Timing information of one iteration for different steps 

during the optimization. 

Step Time (s) 

(1) Motion compensation  14.43 

(2) DVF 

estimation  

(2.1) Total energy computation 1.84 

(2.2) Gradient of total energy computation 7.74 

 

The optimization totally needs to be run with 10 iterations of 

motion compensation (outer loop) and 100 iterations of DVF 

estimation (inner loop), so the total computational time of 

reconstruction of a 4D 256 × 256 × 150 CBCT image with 10 

phases is 1102.3 s (18.37 m). Compared with the previous 

voxel-based CPU algorithm of SMEIR, which needs about 48 

hours, the proposed mesh-based 4D-CBCT reconstruction 

method has largely improved the efficiency in computation (i.e. 

about 157 times faster than the original SMEIR method). 

 

IV.  CONCLUSION 

 

The GPU-based parallel 4D CBCT reconstruction method 

uses the feature-based mesh for estimating motion model and 

demonstrates equivalent image result with previous SMEIR 

approach, with significantly improved computational speed. 
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