
Appendix of Computing a High-Dimensional Euclidean Embedding
from an Arbitrary Smooth Riemannian Metric

A DERIVATION OF EQ. (16) AND EQ. (17)
In this appendix we show the detailed derivation of Eq. (16) and
Eq. (17), which is inspired by the idea given in the Appendix of
Shoemake and Duff’s paper [Shoemake and Duff 1992].
We only consider Eem in this case, since Er eд is constant when

the vertex coordinates {vi |i = 1, · · · ,nv } are fixed. Note that for
Eem in surface case, i.e., Eq. (12), Tj =WjP−1j OT

jα or in volume case,
i.e., Eq. (13), Tj =WjW−1j is also constant when {vi |i = 1, · · · ,nv }
are fixed. The high-dimensional rotation Uj for each triangle or
tetrahedron j is independent of each other, so our problem is simply
expressed as:
For triangle or tetrahedron j, find Uj minimizing 


Tj − UjQj





2
F
,

subject to orthogonality constraint UTj Uj − I = 0.

Since the squared Frobenius norm 


Tj − UjQj




2
F
is exactly the

trace of matrix (Tj − UjQj ) (Tj − UjQj )
T , we can use a symmet-

ric Lagrange multiplier matrix Y to incorporate the orthogonality
constraint as a linear term in the Lagrangian:

F (Uj ,Y) = trace[(Tj − UjQj ) (Tj − UjQj )
T + (U

T
j Uj − I)Y]. (1)

By differentiating F (Uj ,Y) with respect toUj and making it equal
to a zero matrix, we can get:

2(UjQj − Tj )QT
j + 2UjY = 0. (2)

Thus we have:

Uj (QjQT
j + Y) = TjQT

j . (3)

Since QjQT
j + Y is a symmetric matrix and Uj is an orthogonal

matrix, we can consider Uj (QjQT
j + Y) as the Polar decomposition

of matrix TjQT
j .

This means that Uj is the orthogonal factor of the Polar decom-
position of matrix TjQT

j , as shown in Eq. (16) and Eq. (17) in paper.

B BEHAVIORS OF DIFFERENT µ VALUES IN EQ. (15)
The coefficient µ is a weighting factor to balance the similarity and
regularity terms during embedding optimization (Sec. 3.4.1 in paper).
The similarity term is defined based on the number of mesh elements
(i.e., triangles or tetrahedrons), and the regularity term is defined
based on the number of vertices. Through Euler characteristic, we
know that the number of mesh elements and the number of vertices
in a manifold have the linear relationship. So no matter what mesh
models are, it is possible to find a suitable constant coefficient µ to
balance the similarity and regularity energies at a relatively stable
order of magnitude in different models. From our experimental

observations, µ = 100 (i.e., order of magnitude of µ is 2) is a good
choice to all models in our paper and appendix.
In this section, we provide the experiments for behaviors of dif-

ferent µ values in embedding results. In order to emphasize its
importance and behaviors, we choose different orders of magnitude
of values to test the corresponding embedding results. Since it is
not straightforward to visualize the computed embedding results
≥ 4D, we choose the example of an ideal embedding in 3D space,
i.e., 2D domain with Gaussian embedding metric (Fig. 4 in paper)
as examples to illustrate the importance of having an appropriate
value of the coefficient in the regularity term.

If we use Eq. (12) or Eq. (13) only, i.e., without adding the regularity
term Er eд to optimize a 3D embedding, the result is shown in Fig. 1
(µ = 0).We can see that the result is far from our desired result (many
wrinkles and not smooth), known as corrugations, that can form
fractal patterns [Borelli et al. 2012], though the average relative edge
length error does reduce dramatically (i.e., Lr elavд = 11.73% compared
with original Lr elavд = 20.71%). So it is necessary to add a regularity
term to obtain a smooth embedding.
Along with increasing the orders of magnitude of µ, we can see

that the embedding is smoother. It is interesting to see that the
embedding errors are decreasing at first and then increasing, this is
probably because some embedding results are at local minima (such
as µ = 0, 1, 10 in Fig. 1), so adding a regularity term is also a good
strategy to let the optimizer jump out of the local minima to reach
a better result. However, if the regularity coefficient is too large,
the embedding is over-smooth and the accuracy of the embedding
is poor. One extreme case is the order of magnitude of µ is 5 (i.e.,
µ = 100, 000), the computed embedding almost does not have any
deformation from the original 2D plane. In order to balance the
smoothness and accuracy, we have tried a sequence of increasing
values of µ in different orders of magnitude, and found that µ = 100
is an appropriate setting (Lr elavд = 0.92% and Lr elmax = 10.58%; and the
3D embedding shape is smooth and very close to the ideal Gaussian
surface) as shown in Fig. 1.

C OBSERVATION ON CHOOSING THE DIMENSION OF
EMBEDDINGS

Tab. 1 provides the average relative edge length errors of all surface
and volume models in our experiments (besides the results shown
in Sec. 6.1.2 of paper) for different dimensions. Error values in bold
demonstrate that 8D is a good and reasonable choice observed in
the experiments.

D K-NN EFFICIENCY ON HIGH-D EMBEDDING
The following criteria of K-NN efficiency are used: Tknn is com-
putational time on K-NN searching for all particles; Navд is the
average number of nearest neighbors to be searched; Nmax is the
maximal number of nearest neighbors to be searched. We use the
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Fig. 1. The behaviors of different orders of magnitude of µ values in 3D embedding results of a 2D domain with Gaussian embedding metric. A µ value in bold
emphasizes the best result observed in the experiment.

Particle optimization on the original 
anisotropic 3D space

Particle optimization on the 8D 
Euclidean embedding space

# neighbors histogram # neighbors histogram 

Navg= 103
Nmax = 298
Tknn= 0.18s

Navg= 19
Nmax = 42
Tknn= 0.035s

Fig. 2. Comparison of K-NN searching of 2000 particles optimization on
the original anisotropic 3D Cyclide surface and its 8D Euclidean embedded
surface.

above criteria to compare Zhong et al.’s anisotropic particle optim-
ization [2013] with our proposed isotropic particle optimization on
the high-d Euclidean embedding.

In order to compare the efficiency of the K-NN between the high-
d embedding space and the original space, we use the same search
radius 5σ , where σ is the kernel width of the inter-particle energy in
the Euclidean embedding space (as mentioned in Sec. 4.1 of paper).
However, when the K-NN computation happens in the original
space, we need to transform this search radius into the original
anisotropic space, resulting in a large range once the anisotropic
stretching ratio is high. After that, we need to further check and
prune the spurious neighbors under the given metric.
Fig. 2 shows the K-NN computation of 2000 particles optimiza-

tion on the computed 8D Euclidean embedding in this paper and
the original 3D surface [Zhong et al. 2013] of the Cyclide model
with the stretching ratio s2

s1 ∈ [1.6, 9.4]. We provide the statistics
when the particles are at equilibrium state, i.e., at the end of the
optimization, since the number of neighbors may vary slightly at
each iteration during optimization. The K-NN at equilibrium state
is more convincing and stable to analyze. It demonstrates that the
average K-NN on 8D Euclidean embedding is 19 compared with 103
on the original anisotropic space, and the K-NN searching time of
2000 particles for each iteration on the embedded surface is about
5 times faster than that of the original surface with the specified
anisotropic metric.

Besides Cyclide model, we also measure the K-NN efficiency
on the high-d embeddings of other models, such as Kitten, Vase,
Knot, Club, etc., and the average K-NN is quite stable and small,
i.e., Navд = 20. However, without using Euclidean embedding,
the average K-NN highly depends on the stretching ratio in the
Riemannian metric. The higher the stretching ratio is, the larger
the average K-NN is, such as Navд = 232 on another Cyclide model
(as shown in Fig. 13 of paper) with the larger stretching ratio s2

s1 ∈

[2, 29].

E MORE RVD AND MESHING RESULTS
Our proposed method works on different shapes of the models and
there are some extra results given in the following, including differ-
ent topology genera, closed surfaces and surfaces with boundaries.
Figs. 3, 4, 5, 6, 7, 8, and 9 show that the anisotropic 3D surface RVD
and meshing results of Vase, Bone, Knot, Genus3, Rocker Arm, Club,
and Hand models with the anisotropic metrics designed by the sur-
faces’ curvature tensors. In order to demonstrate the scalability of
the proposed method on medium-large sizing RVD and meshing of
3D surfaces, Fig. 10 (Fertility model) shows the final results with
vertices ranging from 10,000 to 100,000. The statistics and timings
for our 8D embedding computation and surface meshing on these
models are shown in Tab. 2. It is noted that our embedding computa-
tion in 8D space is quite efficient, and all surface models provided in
this article need only dozens of seconds (only the large sizing model,
such as the dense Fertility model, needs hundreds of seconds).

Fig. 11 show some more volumetric RVD results on a Cube model
with domain [1, 11]3 and the sampling ranges from 6000 to 30,000.
The targeted Riemannian metric field is specified via a highly nonlin-
ear analytic function as M(x) = R(x)Tdiaд{Stretch(x)2, 1, 1}R(x),
where Stretch(x) = (0.025+ (1−e−0.01 |x

2+y2+z2−49 | ))−1, and R(x)’s
columns are (x/

√
x2 + y2 + z2,y/

√
x2 + y2 + z2, z/

√
x2 + y2 + z2)T ,

and two orthogonal vectors. The stretching ratio is Stretch(x) ∈
[1, 40]. Fig. 12 shows the visualization of the stress tensor field
by using 3D volumetric RVD (with 10,000 samples) on the Brake
Lever model (filled with air inner part) with the stretching factor
in the major direction s1 (x) ∈ [0.5, 103] (data downloaded from
www.tensorvis.org).
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F MORE COMPARISON RESULTS
In order to further demonstrate the better performance of our
method compared with other anisotropic meshing approaches, we
provide more experiments in the following, in addition to results in
the paper. All the meshing results of the comparison methods were
provided by the original authors.
Fig. 13 compares our method with anisotropic Delaunay refine-

ment (ADR) [Boissonnat et al. 2015] on the Fertility surface model
with the stretching ratio s2

s1 ∈ [1, 14].
Fig. 14 compares our method with conformal embedding [Zhong

et al. 2014] and particle-based method [Zhong et al. 2013] on the
Ellipsoid surface model with the stretching ratio s2

s1 ∈ [1, 10].
Tab. 3 shows the final mesh quality of different anisotropic surface

methods. Our results demonstrate that they can yield better mesh
angle and triangle quality based on the proposed high-d embedding
framework, so that match the input curvature-based anisotropy.
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Fig. 3. Vase model.

Fig. 4. Bone model.

Fig. 5. Knot model.

Fig. 6. Genus3 model.

Fig. 7. Rocker Arm model.
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Fig. 8. Club model with boundaries.

Fig. 9. Hand model with boundaries.

25,000 vertices 100,000 vertices

10,000 vertices

Fig. 10. Fertility models with 10,000, 25,000, and 100,000 vertices.

20,000 samples

30,000 samples

6000 samples

1

40

Stretching ratio

Fig. 11. The anisotropic 3D volumetric RVD results on the Cube model
with 6000, 20,000, and 30,000 samples. The stretching ratio is Stretch (x) ∈
[1, 40].

Table 1. Statistics for embedding errors (i.e., average relative edge length
errors) in different dimensions.

Model 4D 5D 6D 7D 8D 10D 20D

Surfaces

Gargo 16.70% 10.07% 7.38% 6.90% 6.72% 6.62% 6.53%
Upright 22.23% 4.69% 3.00% 2.65% 1.52% 1.48% 1.46%
Nefertiti 14.32% 6.39% 3.78% 3.24% 2.98% 2.95% 2.93%
Vase 15.71% 8.69% 5.12% 4.30% 4.18% 4.15% 4.10%
Bone 29.41% 12.09% 6.33% 4.15% 3.74% 3.55% 3.40%
Knot 20.22% 8.70% 6.11% 4.86% 4.49% 4.38% 4.31%

Genus3 17.46% 7.75% 4.37% 3.91% 3.70% 3.59% 3.46%
Rocker Arm 16.19% 10.90% 6.08% 5.77% 5.62% 5.59% 5.59%

Club 17.09% 10.04% 7.26% 6.18% 5.44% 5.40% 5.35%
Hand 14.69% 5.81% 3.06% 2.88% 2.68% 2.62% 2.47%

Fertility 20.60% 9.35% 5.68% 4.09% 3.86% 3.71% 3.68%
Ellipsoid 35.69% 5.14% 2.60% 1.65% 0.96% 0.94% 0.92%

Volumes
Cube2 (Fig. 15 b in paper) 13.20% 4.48% 2.90% 1.56% 1.30% 1.22% 1.17%
Cube3 (Fig. 16 in paper) 19.34% 7.78% 4.87% 2.75% 2.12% 2.10% 2.07%
Sphere (Fig. 18 in paper) 32.14% 13.13% 4.34% 2.18% 2.04% 2.02% 2.01%

Note: The values in bold are the 8D embedding results.
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Table 2. Statistics and timings for 8D embedding computation and surface meshing on models in appendix.

Model Input #Vert. Stretch Lr elavд Lr elmax Embed. Time Output #Vert. Gmin Gavд θmin θavд %<30◦ Mesh Time

Vase 20, 000 [1, 5] 4.18% 157.97% 17.09 s 2000 0.36 0.86 21.33◦ 49.52◦ 0.24% 7.48 s
Bone 16, 794 [1, 10] 3.74% 125.24% 13.45 s 3000 0.32 0.85 19.69◦ 48.47◦ 0.48% 8.69 s
Knot 24, 392 [2, 8] 4.49% 168.46% 21.16 s 5000 0.47 0.93 25.37◦ 53.79◦ 0.05% 26.41 s

Genus3 26, 620 [1, 10] 3.70% 110.08% 40.48 s 8000 0.42 0.90 23.12◦ 50.51◦ 0.09% 35.16 s
Rocker Arm 35, 840 [1, 7] 5.62% 138.31% 32.38 s 5000 0.33 0.86 19.54◦ 48.13◦ 0.15% 31.47 s

Club 30, 000 [1, 6] 5.44% 143.44% 27.82 s 5000 0.46 0.91 24.10◦ 51.25◦ 0.07% 29.94 s
Hand 36, 619 [1, 5] 2.68% 121.57% 35.78 s 10, 000 0.28 0.90 16.28◦ 50.14◦ 0.23% 55.50 s

Fertility 55, 902 [1, 10] 3.86% 169.84% 63.31 s 10, 000 0.32 0.86 18.02◦ 48.10◦ 0.21% 51.53 s
Fertility 55, 902 [1, 10] 3.86% 169.84% 63.31 s 25, 000 0.46 0.90 25.16◦ 51.51◦ 0.05% 121.18 s
Fertility 223, 626 [1, 10] 2.58% 97.36% 256.44 s 100, 000 0.62 0.92 28.00◦ 53.55◦ 0.006% 456.39 s

Note: Embed. Time: timing for embedding computation with 50 iterations. Mesh Time: timing for both particle optimization with 50 iterations and RVD computation.

Stretching factor

0.5

103

Fig. 12. The visualization of the stress tensor field by using 3D volumetric
RVD (with 10,000 samples) on the Brake Lever model (filled with air inner
part) with the stretching factor in the major direction s1 (x) ∈ [0.5, 103].

ADR Our method

Fig. 13. Comparison on anisotropic meshing results (12,480 vertices) with
ADR [Boissonnat et al. 2015] and our method on the Fertility surface model.

Conformal embedding

Particle

Our embedding

Fig. 14. Comparison on anisotropic meshing results (1000 vertices)
with conformal embedding method [Zhong et al. 2014], particle-based
method [Zhong et al. 2013], and our method on the Ellipsoid surface model.

Table 3. Comparison of mesh quality on anisotropic surface meshing meth-
ods.

Model Stretch Output # Vert. Gmin Gavд θmin θavд %<30◦

Ellipsoid (conformal embed) [1, 10] 1000 0.11 0.78 3.93◦ 44.03◦ 12.42%
Ellipsoid (particle) [1, 10] 1000 0.45 0.84 18.96◦ 48.50◦ 0.15%
Ellipsoid (our high-d embed) [1, 10] 1000 0.57 0.94 36.57◦ 55.13◦ 0

Fertility (ADR) [1, 14] 12, 480 0.002 0.56 0.06◦ 29.94◦ 41.79%
Fertility (our high-d embed) [1, 14] 12, 480 0.39 0.90 19.02◦ 51.17◦ 0.17%
Note: The values in bold emphasize the best results observed in the comparison experiments.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 62. Publication date: August 2018.


