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In this Supplementary Material, we provide some additional description and

discussion about this work, such as the architecture of the autoencoder on image

in Sec. 1, training details in Sec. 2, quantitative evaluation metrics in Sec. 3,

and more experimental results and analysis in Sec. 4.

1. The Architecture of the Autoencoder on Images5

Fig. 1 shows the detailed architecture of the image autoencoder.
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Figure 1: The architecture of the autoencoder on images. The encoder 𝐸Y maps a given image

into the image latent space. 𝑍𝑌 is a 1024-dim feature vector that encodes the given image.

The decoder 𝐷Y reconstructs the feature vector from the latent space back to the 2D color

image space.
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2. Training Details

In this section, we introduce the training details for each part of our entire

framework. First, we train our autoencoders on point cloud and images, respec-

tively. In our experiments, we train our autoencoder on point clouds for 20010

epochs. We use Adam optimizer (𝛽1 = 0.9) with an initial learning rate of 0.01

and a batch size of 32. The learning rate is reduced with decay rate of 0.7 every

20 epochs. The training time on point clouds of chair class takes less than 4

hours. In our experiments, we train our autoencoder on images for 400 epochs.

We use Adam optimizer (𝛽1 = 0.9) with an initial learning rate of 0.0005 and15

a batch size of 32. We keep the same learning rate for first 200 epochs and

linearly decay the learning rate to 0 for the next 200 epochs. The training time

on images of chair class takes around 4 hours.

As for training the mixer, we use Adam optimizer (𝛽1 = 0.9) with initial

learning rate of 0.0002 and batch size of 128. We keep the same learning rate for20

first 300 epochs and linearly decay it to 0 for another 300 epochs. The training

time of our mixer on chair class takes approximately around 10 minutes. We

train our mixer on different categories for 600 epochs.

As for training the joint generative model, we train our joint generative

model with WGAN-GP [1] objective. We use Adam optimizer (𝛽1 = 0.5) with25

an initial learning rate of 0.0005 and a batch size of 50. The learning rate is

halved every 300 epochs until it reaches 0.0001. The generator takes the input

of a noise vector of dimension 256 with zero mean and 0.2 standard deviation,

and generates joint latent vector 𝑍𝑋𝑌 . We train each joint generative model for

2000 epochs. The training time of our joint generative model takes around 1030

minutes.

The architecture of the binary classification network for cross-modality sim-

ilarity evaluation is described in Sec. 2.4 in the main paper. For training this

network, we use the binary classification loss. We train this network on a set

of the shape and image latent vectors calculated by pre-trained geometry-aware35

autoencoder (GAE)’s shape encoder and image encoder, respectively. We label

2



each such pair as “1”. For each given batch, we generate all possible unmatched

pairs that are labeled as “0”s. We train this binary network on chair class

from ShapeNet Core dataset for 200 epochs. We use Adam optimizer (𝛽1 = 0.9)

with an initial learning rate of 0.0001 and a batch size of 256. We keep the40

same learning rate for first 100 epochs and linearly decay it to 0 for another

100 epochs. After that, we use this pre-trained network to evaluate the CMSS

metric for each method from Tab. 2. in the main paper and Tab. 2 below.

3. Quantitative Evaluation Metrics

Shape Reconstruction Metrics. Let P be the ground truth point cloud45

and P ′ be a reconstructed point cloud. We assume that the number of points in

P matches the number of points in P ′. First, we evaluate F-score [2] at a given

threshold 𝛿 by calculating the harmonic mean of precision and recall between

P and P ′. The threshold value that we choose for our evaluation is 0.0002.

We calculate two F-score values F1 and F2 with the distance 𝛿 and distance50

2𝛿, respectively. We also report the Chamfer Distance (CD) and Earth Mover’s

Distance (EMD) as additional reconstruction metrics.

Shape Generation Metrics. For quantitative comparisons between dif-

ferent point cloud generation methods (including simultaneous multimodal gen-

eration and single-modal generation tasks), we use the evaluation metrics in [3]55

to measure the quality of generated point clouds. Specifically, it suggests using

the Jensen-Shannon Divergence (JSD) to evaluate the marginal distribution de-

fined in the 3D Euclidean spaces. Another two metrics are Minimum Matching

Distance (MMD) and Coverage (COV) to measure the fidelity and coverage of

the generated point clouds and the data distribution, respectively. Based on60

the point cloud-based CD and EMD losses, it can yield four different metrics:

MMD-CD, MMD-EMD, COV-CD, and COV-EMD. Both MMD-CD and MMD-

EMD metrics are multiplied by 102 and 10, respectively, for better viewing in

Tabs. 2 and 3 in the main paper.

Image Generation Metrics. For quantitative comparisons between differ-65
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ent image generation methods (including simultaneous multimodal generation

and single-modal generation tasks), we use the following two common metrics

to measure the quality of generated images. The Frechet Inception Distance

(FID) [4] is the most common metric that uses feature space extracted with

pre-trained inception V3 model [5] for evaluation. Another metric is the Kernel70

Inception Distance (KID) [6] that uses the same feature extraction model. The

FID metric is divided by 10 for better viewing in Tabs. 2 and 3 in the main

paper.

Similarity Metric. In our paper, we propose a new CMSS metric (in Sec.

2.4 in the main paper) to evaluate the multimodal correspondence in the latent75

feature space. This new metric evaluates the similarity correspondence between

the generated shape and image in the latent space for simultaneous multimodal

generation task.

4. More Experimental Results and Analysis

4.1. Comparison with Single-Modal Generation80

We provide the qualitative comparisons of different single-modal point cloud

and image generation methods with our method in the joint latent space as

follows.

In Figs. 2, 3, we qualitatively compare our generated point clouds in joint

latent space with the results generated by the single-modal generation methods,85

such as r-GAN [3], l-GAN (AE-EMD) [3], l-GAN (AE-CD) [3], TreeGAN [7],

and ShapeGF-GAN [8]. As shown in Fig. 2, 3, our method outperforms other

single-modal generation methods in the quality of generated point clouds on

both ShapeNet Core chair and airplane classes with respect to high-fidelity

geometry and topology of a variety of 3D objects.90

In Fig. 4, we qualitatively compare the quality of our generated images

with four alternatives, including rendering the reconstructed meshes for image

generation by using the generated point clouds, and three state-of-the-art and
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well-known generative models, i.e., DCGAN [9], PlatonicGAN [10], and WGAN-

GP [1]. As shown in Fig. 4, our approach generates better quality images95

compared to other alternatives on ShapeNet Core chair class. Our results have

less artifacts and more realistic textures / colors. More image generation results

by our simultaneous multimodal (SMM) generation method are also provided

in other related experiments as shown in the following figures.

4.2. Simultaneous Multimodal Generation100

Comparison with the State-of-the-Arts. We provide more qualitative

evaluation results of our mixer on the joint SMM generation task with other

state-of-the-art methods, such as Shape Unicode (img / pc feats) [11], ZX concat

ZY , ZX + rendering, and ZY + PSGN [12], as shown in Figs. 5, 6, and 7 on

ShapeNet Core chair, airplane, and car classes, respectively.105

Joint Latent Space Interpolation. In Figs. 8, 9, and 10, we show more

results of the linear interpolation in the proposed joint latent space between the

selected left- and right-most shapes and images with large variations in terms

of shape geometry and topology, and image texture on different object classes,

such as chair, airplane, and car classes correspondingly.110

4.3. Analysis

Ablation Study on Shape Auto-Encoding. The goal of this ablation

study is to show the importance of the proposed GAE components. We evaluate

two proposed components, i.e., adaptive query ball (in Sec. 2.1.1 in the main

paper) and particle-based loss (in Sec. 2.1.2 in the main paper) on the point115

cloud reconstruction of the ShapeNet Core chair class as shown in Tab. 1.

On the one hand, we investigate the importance of the proposed adaptive

query ball. In our first ablation experiment, we replace the adaptive query

ball with randomly generated query ball sizes. For each centroid, we replace

estimated radius with the random radius generated within the bounds, i.e.,120

𝑅𝑟𝑎𝑛𝑑 = [𝑅
𝑐𝑙𝑖 𝑝

𝑖
− 0.05, 𝑅𝑐𝑙𝑖 𝑝

𝑖
+ 0.05], 𝑖 ∈ {1, 2, 3}. In the second experiment, we

replace each estimated radius with a fixed radius 𝑅
𝑐𝑙𝑖 𝑝

𝑖
at different point cloud
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Table 1: Ablation experiments on our GAE for the point cloud reconstruction on ShapeNet

Core chair class. QB – query ball, and PL – particle loss.

F1 ↑ F2 ↑ CD ↓ EMD ↓

our (random QB) 60.15 82.72 0.651 0.845

our (fixed QB) 67.30 87.56 0.528 0.686

our (mean QB) 68.04 88.07 0.519 0.668

our (local QB, no clip) 68.06 88.01 0.516 0.646

our (w/o PL, fixed QB) 65.74 86.63 0.557 0.722

our (w/o PL) 66.53 87.13 0.542 0.678

our (GAE) 68.49 88.37 0.504 0.635

resolution levels. In the third experiment, we replace every local estimated

query ball by its mean size per shape. In the fourth experiment, we turn off the

radius clipping operation after the radius estimation step as shown in Tab. 1.125

On the other hand, we provide the experiment results on our proposed GAE

model in the case that the adaptive query ball is turned on alike the particle

loss is turned off. We also include experiments when both the adaptive query

ball and the particle loss are turned off which is similar to the method in Point-

Net++ [13], denoted as “our (w/o PL, fixed QB)” in Tab. 1. Our ablation130

experiments show the importance of both proposed components on the point

cloud reconstruction task. In conclusion, our GAE model benefits the most

when both components are turned on as shown in Tab. 1.

Additionally, we include the comparison results for the flexible and de-

formable convolutions proposed by [14] as Kernel Point Convolution (KPConv)135

that learns to adapt kernel points to local geometry. [14] does not provide

the architecture for the reconstruction task. We have built a reconstruction

model based on the provided classification model by adjusting the last fully-

connected layers to the reconstruction task. Also we use the number of the

input and the reconstructed points to a fixed number (i.e., 2048 points). The140

learning rate and the number of epochs are the same as provided in [14]. Our
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Table 2: Ablation study of our mixer and joint generative model for simultaneous multimodal

generation on chair class.

point cloud image

Model

J
S
D

↓

M
M
D
-C

D

↓

M
M
D
-E

M
D

↓

C
O
V
-C

D

↑

C
O
V
-E

M
D

↑

F
ID ↓

K
ID ↓

C
M
S
S

↑

w/ 𝐿𝐹𝑀 (our) 0.060 0.128 0.522 66.94 69.30 10.53 6.53 98.67

w/o 𝐿𝐹𝑀 0.056 0.130 0.525 65.46 66.42 11.49 7.49 93.43

proposed GAE model with the adaptive query balls significantly outperforms

KPConv [14] model with deformable kernels on the point cloud reconstruction

task of ShapeNet Core chair class. Their results on F1s ↑, F2s ↑, CDs ↓, EMDs

↓ are: 42.94, 66.06, 1.315, 1.102, respectively. To the best of our knowledge,145

there are at least two possible reasons for such poor performance on KPConv

model. First, there is no provided reconstruction model of KPConv in the origi-

nal paper. Second, KPConv model is working on much denser point clouds (i.e.,

more than 6K points) as input on the classification model.

Analysis on Mixer for SMM. The goal of the architecture ablation study150

is to show the importance of the components in the mixer for SMM generation

task. The quantitative evaluation of the ablation study on our mixer is provided

in Tab. 2. Our study shows the importance of the proposed intermodality feature

mapping loss 𝐿𝐹𝑀 for the joint generation task. Additionally, we found the

optimal aggregation function 𝑓𝑎𝑔𝑔𝑟 (𝑍
′

𝑋
, 𝑍

′

𝑌
) as sum and the best joint latent155

vector dimension as 1024.

4.4. SMM Semantic-Aware Generation

In this experiment, we show that our mixer is capable of sharing additional

semantic segmentation information between modalities, when one of the modal-

ities is lacking such segmentation information. Specifically, we train our mixer160

on the joint latent codes extracted from point clouds without semantics and

images with semantics (i.e., the part-level semantic segmentation information is
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only available in images as indicated by colors).

Dataset. We evaluate this task on chair class from Shape COSEG dataset [15]

containing 400 models, where each model is annotated with three parts (i.e.,165

back, seat, and legs). This dataset is challenging due to the small set size and

variety of model shapes. Initially we translate all models to the origin, and

then normalize and orient them, which is the same process as in [3]. From each

model, we sample 10,000 uniform points with normals from meshes and their

segmentation labels. Additionally, we approximate surface area for each shape170

point cloud from dataset for particle loss calculation. From each object, we

render one view 128 × 128 semantic image from a fixed viewpoint.

Training Details. We formulate the semantic shape GAE as a per-point

classification problem along with the point cloud reconstruction. We extract

bijection information from EMD loss and use it to find point-to-point corre-175

spondence to calculate the segmentation loss. The overall loss for our 3D se-

mantic shape autoencoder is a weighted sum of two original GAE losses, i.e.,

reconstruction loss and particle-based loss, as shown in Eq. 2 from the main

paper, plus a per-point classification loss. We train this semantic shape GAE

on the chair class from Shape COSEG dataset. Additionally, we train image180

autoencoder on the semantic images. After that we train our proposed mixer

and joint generative model in the same way as other tasks on ShapeNet Core

dataset. To be more specific, semantic labels are only needed to train our point

cloud autoencoder (i.e., GAE). Training our mixer does not require semantic

labels. For SMM semantic-aware generation task in the joint latent space, we185

do not need semantic labels for point clouds.

Fig. 11 shows the new results of the cross-modal shape-image semantic-aware

generation, where images can successfully share semantic information with their

corresponding point clouds via our mixer and joint generative model. This new

task can help us to do multimodal generation and segmentation tasks simulta-190

neously, which enhances the capability of the corresponding single-modality and

single-tasking to the next level, where operations can be conducted on corre-

spondingly appropriate modality, e.g., assigning semantic parts is easier through
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annotating on 2D images and transferring to 3D shapes, since, on the contrary,

annotating 3D shapes is more difficult and less efficient.195
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(a) Our (joint) (b) r-GAN [3] (c) l-GAN (CD) [3] (d) l-GAN (EMD) [3] (e) TreeGAN [7] (f) ShapeGF-GAN [8]

Figure 2: Qualitative comparison of different single-modal shape (point cloud) generation

methods on chair class. Our joint SMM (shape + image) generation results are also provided

correspondingly.
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(a) Our (joint) (b) r-GAN [3] (c) l-GAN (CD) [3] (d) l-GAN (EMD) [3] (e) TreeGAN [7] (f) ShapeGF-GAN [8]

Figure 3: Qualitative comparison of different single-modal shape (point cloud) generation

methods on airplane class. Our joint SMM (shape + image) generation results are also

provided correspondingly.
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(a) Our (joint) (b) Rendering (c) DCGAN (d) PGAN (e) WGAN-GP

Figure 4: Qualitative comparison of different image generation methods on chair and airplane

classes for Rendering, DCGAN [9], PlatonicGAN [10] (PGAN), and WGAN-GP [1]. Our joint

SMM (image + point cloud) generation results are also provided correspondingly.
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Figure 5: Qualitative comparison of our method with the state-of-the-art methods on mul-

timodal shape and image generation on chair class. ZX - the shape latent space, ZY - the

image latent space. Left: point clouds, right: images.
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Figure 6: Qualitative comparison of our method with the state-of-the-art methods on multi-

modal shape and image generation on airplane class. ZX - the shape latent space, ZY - the

image latent space. Left: point clouds, right: images.
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Figure 7: Qualitative comparison of our method with the state-of-the-art methods on multi-

modal shape and image generation on car class. ZX - the shape latent space, ZY - the image

latent space. Left: point clouds, right: images.
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Figure 8: Joint latent space interpolation and generation on chair class. Top row: point

clouds, bottom row: images.
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Figure 9: Joint latent space interpolation and generation on airplane class. Top row: point

clouds, bottom row: images.
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Figure 10: Joint latent space interpolation and generation on car class. Top row: point clouds,

bottom row: images.
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Figure 11: Some new SMM semantic-aware generation results with large variations in shape

geometry and topology on chair class from Shape COSEG. Top row: point clouds, bottom

row: images.
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