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Abstract. In this paper, we present an end-to-end deep learning method, JointVes-
selNet, for robust extraction of 3D sparse vascular structure through embedding
the image composition, generated by maximum intensity projection (MIP), in-
to the 3D magnetic resonance angiography (MRA) volumetric image learning
process to enhance the overall performance. The MIP embedding features can
strengthen the local vessel signal and adapt to the geometric variability and s-
calability of vessels. Therefore, the proposed framework can better capture the
small vessels and improve the vessel connectivity. To our knowledge, this is the
first time that a deep learning framework is proposed to construct a joint convo-
lutional embedding space, where the computed joint vessel probabilities from 2D
projection and 3D volume can be integrated synergistically. Experimental results
are evaluated and compared with the traditional 3D vessel segmentation methods
and the state-of-the-art in deep learning, by using both public and real patient
cerebrovascular image datasets.

Keywords: Deep neural network · 3D cerebrovascular segmentation · Maximum
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1 Introduction

A growing body of evidence in animal and human studies shows that micro cerebrovas-
cular abnormalities are the source of many vascular diseases and neurologic disorders,
e.g., hypertension, arteriosclerosis, cerebral amyloid angiopathy, diabetes [1–3]. There
is a pressing need for better extracting and understanding of vascular abnormalities in
vivo at the micro-level [4]. However, compared with traditional organ segmentations,
segmenting the cerebrovascular structure from magnetic resonance angiography (M-
RA) is very challenging due to difficulties, such as complex geometry and topology
variations as well as data sparseness (artifacts, noises, low signal-to-noise ratio).

In recent decades, there have been many automatic model-driven vessel segmenta-
tion approaches proposed, such as multiscale filtering [5], region growing techniques [6],
active contours [7], statistical and shape models [8, 9], particle filtering [10], geometric
flow [11], path tracing [12], level-set approach [13], etc. However, these approaches are
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easily overwhelmed by tons of low-level handcrafted features and complicated manual
parameter adjustments to overcome aforementioned difficulties and subject variations.

Recently, data-driven approaches have been proposed to robustly investigate the cor-
relations between different objects / instances without relying on hard-coded metrics. In
medical image processing, several deep learning-based methods have been proposed to
extract vessels from 2D retinal images, such as DeepVessel [14], cross-modality learn-
ing approach [15], multi-level deep supervised networks [16], DNN-based method [17],
unified convolutional neural network (CNN) and graph neural network (GNN) [18], etc.
These methods can well perform 2D vessel segmentation tasks, but are far from success
in 3D vessel scenarios. There are still very few dedicated deep learning architectures
for 3D vessel segmentation. For instance, Uception [19] presents a network inspired
by 3D U-Net [20] and Inception modules [21]. DeepVesselNet [22] and VesselNet [23]
propose 2D orthogonal cross-hair filters in three planes on each voxel to obtain the
3D contextual information at a reduced computational burden and less memory. The
major challenges of 3D cerebrovascular segmentation are complicated vessel geometry
and topology variations, high sparseness of vessel data in a large-sized 3D volume, and
the limited resource of 3D vasculature datasets. Existing methods are not specifically
designed for solving these challenges.

To fill the gap in the high-fidelity 3D cerebrovascular segmentation, we present
an end-to-end deep learning method, JointVesselNet. A multi-stream CNN framework
is adopted to effectively learn the 3D volume and multislice composited 2D maxi-
mum intensity projection (MIP) [24] feature vectors respectively. It then explores the
inter-dependencies between 3D and 2D embedded feature vectors in a joint volume-
projection embedding space by backprojecting the 2D feature vectors, learned from
MIP, into the 3D volume embedding space. MIP is a widely-used scientific method for
visualizing and analyzing 3D vasculature structure in MRA diagnosis by domain scien-
tists. It can enhance the local vessel signal by canceling out the random noises and adapt
to geometric variability and scalability. Through the novel integrative learning of both
3D volume and 2D MIPs, the proposed framework can better capture the small vessels
and improve the subtle vessel connectivity. To our knowledge, this is the first time that
a deep learning framework is proposed to construct a joint convolutional embedding
space, where the computed joint vessel probabilities from 2D projection and 3D vol-
ume can be integrated synergistically. The key motivation of the proposed network is
to integrate the trustworthy auxiliary from learned 2D MIP features into the 3D volume
segmentation network, instead of using more complicated networks empirically. Exper-
imental results are evaluated and compared with the traditional 3D vessel segmentation
methods and the state-of-the-art in deep learning by using both public and real patient
cerebrovascular image datasets. The application of this accurate segmentation of sparse
and complicated 3D vascular structure facilitated by our method demonstrates the po-
tential in improving MRA diagnosis of vascular diseases.

2 Method

In this section, we introduce the components of the JointVesselNet model: dataset
preparation and generation, network architecture, and loss function.
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2.1 Dataset Preparation and Generation

In this work, we use two different real patient datasets to evaluate our proposed JointVes-
selNet method. The first dataset is the public TubeTK Toolkit MRA dataset from U-
niversity of North Carolina at Chapel Hill 3, acquired by a Siemens Allegra head-
only 3T MR system. There are 42 patient cases in the whole dataset, which have the
manual-labeled vessel segmentation masks. The voxel spacing of the MRA images is
0.5× 0.5× 0.8 mm3 with a volume size of 448× 448× 128 voxels.

The second dataset is provided by domain experts, who are neurologists and radiol-
ogists under our collaboration. 11 healthy volunteers were scanned in midbrain regions
with a dual echo susceptibility weighted imaging (SWI) sequence at four time points:
the first was acquired pre-contrast and the remaining three were acquired post-contrast
during a gradual increase in dose delivered over the time frame of 20 mins (final con-
centration = 4 mg / kg); with the imaging parameters: echo time (TE)1 / echo time
(TE)2 / repetition time (TR) = 7.5 / 15 / 27 ms, bandwidth = 180 Hz / pxl, flip angle
= 15◦ (pre-contrast and final post-contrast data) and 20◦ (first and second post-contrast
data). The voxel spacing is 0.22×0.22×1 mm3 with a volume size of 832×1024×48
voxels. This protocol enables short and long TE magnitude data to produce MRA. Then,
the MRA is calculated using a non-linear subtraction (MRAnls) method [25], which is
employed for selective MRA enhancement utilizing the flow rephrased and dephased
images. Finally, the ground truth vessel labels are obtained by integrating an enhanced
angiography map from the computed MRAnls to set a more reasonable threshold for
the initial mask, followed by domain experts’ post-manual labeling refinement using a
developed cerebrovascular labeling and visualization tool.

2.2 Network Architecture

The proposed JointVesselNet mainly consists of a dual-stream component (i.e., a 3D
volume segmentation stream and a 2D composited MIP segmentation stream) and the
bi-directional operations between these two streams (i.e., 3D-to-2D projection and 2D-
to-3D backprojection). The overall architecture is demonstrated in Fig. 1.

In this work, the two-stream segmentation component learns vessel feature vectors
in 3D volume and corresponding multiple 2D MIPs (enhanced and dense depiction of
3D relationships via a 3D-to-2D projection computation) contexts, respectively. We use
a 3D U-Net [20] as the 3D volume segmentation branch and a half 2D U-Net [26] (in
terms of feature channel numbers) as the 2D composited MIP segmentation branch,
respectively. Since U-Net-like networks are the most commonly-used and robust med-
ical imaging segmentation neural networks across different data modalities for varying
organ / tissue geometries, it is suitable for our work to justify the benefits from the 2D-
to-3D backprojection and joint embedding of 3D volume and 2D composited MIP. A
U-Net-like network is essentially a convolutional encoder-decoder network. In Fig. 1,
the layer output feature channel numbers are denoted in the corresponding blocks and
layer input spatial dimensions are shown in the horizontal levels of every block.

3 https://public.kitware.com/Wiki/TubeTK/Data
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Fig. 1: The architecture of JointVesselNet. The major procedure includes compositing MIPs via
3D-to-2D projection, dual-stream segmentation learning for 3D volume and 2D composited MIP
feature vectors, mapping 2D composited MIP feature vectors back to 3D volume feature space
via 2D-to-3D backprojection, building a joint embedding for learning the final vasculature mask.

Due to the limited data availability and the large volume size in cerebrovascular
image datasets, we choose to train the network patch-wisely. Specifically, from the ob-
servation that most brain MRAs have much higher resolutions in axial plane than other
planes, we adaptively train our network using none-cubic patches, which have larger
dimension sizes across axial plane, instead of resizing the data into the uniform voxel
spacing through an interpolation before the network training, to avoid potential seg-
mentation inaccuracy. As shown in Fig. 1, the key step in our network is the effective
integration of the features from two different streams / domains. Accordingly, two main
challenges need to be overcome in this work. The first one is the effective format of the
corresponding 2D composited MIPs from a randomly-extracted 3D volume patch that
is suitable for simultaneous dual-stream learning design. The second one is the effec-
tive approach for backprojecting the feature vectors extracted from the composited MIP
image plane pixels (in a dimension-reduced 2D space) back to the corresponding 3D
volume spacing voxels. More details are introduced in the following.

3D-to-2D Projection in Dual-Stream Design. The major motivation for projecting
the 3D volume space into the 2D MIP space is to enhance the local vessel probabil-
ity (sparseness) as well as the signal-to-noise ratio. Given a randomly-extracted 3D
volume patch V of the size K1 × K2 × K3 (e.g., we use 128 × 128 × 16 in our ex-
periments) and K3 along vertical axis, we compute s-sliced (e.g., s = 5 in our exper-
iments as suggested by domain experts) MIPs of V along vertical axis with overlap-
ping coverage every t slice interval. Consequently we can get a set of m consecutive
MIPs, i.e., P = {P1, P2, . . . , Pk, . . . , Pm−1, Pm}, in which Pk is the MIP across the
[(k−1)t+1]th slice to the [(k−1)t+ s]th slice in V . It is noted that in a 2D MIP, only
one voxel with the maximum intensity among the s voxels along the vertical axis in V
will be recorded, which is prone to an information loss, considering the segmentation
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Fig. 2: (a) Illustration of the 3D-to-2D projection in the spatial domain for computing a 2D com-
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within backprojection layers in the embedded feature domain. Backprojected pixel-voxel feature
pair examples can be traced via the pairing colors (e.g., green, orange, purple, and blue) in (b).

task needing information of every voxel. Consequently, we set t = 2 as a trade-off be-
tween computation cost and information completeness / denseness. We can getmMIPs
of size K1 ×K2 for V , where the MIP number m is computed as:

m =

⌊
1

t
(K3 − s)

⌋
+ 1. (1)

A MIP conveys denser vessel information and is naturally suitable for 2D convolu-
tion. However, we now have m different MIPs and need to feed them to our network in
the MIP stream, in company with the 3D volume stream V as an input pair to our en-
tire network. The information from the m MIPs is equally important. In order to avoid
stacking them to a K1×K2×m volume such that the 2D CNN would essentially treat
it as a 2D input of a spatial dimension K1 × K2 with m different properties (feature
channels), we convert the m MIPs to a tiled MIP with a larger 2D spatial size, such as
0.5mK1 × 2K2. In this case, the 2D convolution operates equally across the 2D com-
posited MIP plane domain. The slice indices from where the MIP pixels are selected in
the original V are also recorded so as to effectively restore the pixel-wise information
extracted from MIP to the 3D volume space, which will be used in the 2D-to-3D back-
projection transformation in the following process. The format of the 2D composited
MIP (e.g., six consecutive MIPs) computed from a 3D patch is shown in Fig. 2 (a).

2D-to-3D Backprojection for Joint Embedding. Once the 3D volume and 2D MIP
streams learn their segmentation features respectively, we intend to integrate them in
a unified joint hidden feature embedding space to yield the final 3D segmentation pre-
diction. In order to achieve this, we conduct several operations within our network to
backproject the pixel features extracted from the composited MIP back to their corre-
sponding 3D voxel feature space.

The final-stage hidden feature from 2D composited MIP segmentation branch has
the size 0.5mK1 × 2K2 with C1 channels (C1 = 32 as shown in Fig. 1), which is
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the input of the backprojection layers. We first disassemble it to restore m C1-channel
features for the corresponding MIPs (e.g., P1, P2, . . . , Pm−1, Pm, where m = 6 as
illustrated in Fig. 2 b). Then we use the recorded index information to map the MIP
pixel features back to where they are selected from V during the 2D composited MIP
generation. Fig. 2 (b) shows how the feature vectors of two consecutive MIPs (P1 and
P2) are disassembled from the composited MIP. They project their pixel feature space
(Pm−j , i.e., the j-th slice among 5-sliced MIP Pm, 1 ≤ j ≤ 5) back to the voxel feature
space (Sn, i.e., the n-th slice in the input 3D patch, 1 ≤ n ≤ 16). It is noted that the
feature dimension is reduced from 3D to 2D for a convenient illustration in Fig. 2 (b)
(i.e., without considering the 32 feature channels).

For the features of overlapping slices (from the consecutive MIPs) derived from the
enhanced vessel probability / features, which are covered by multiple MIPs, we take
the element-wise maximum value across the overlapping restoration through the fea-
ture channels, i.e., FSn [i] = max(FP1−1 [i], . . . , FP6−5 [i]), 1 ≤ i ≤ 32, where FSn [i]
represents the i-th dimensional feature (channel) F at the n-th slice in the 3D patch. For
example, the feature FS9

is computed across the overlapping slices of P3−5, P4−3, P5−1
as highlighted in the pink color in Fig. 2 (c). The whole process of the cross-MIP fu-
sion in the feature channels of the 3D volume feature space is shown in Fig. 2 (c) in
detail. Now, in this 3D volume feature space, the backprojected 2D MIP features and
3D volume features from two streams are integrated together through concatenation,
constructing a unified high-dimensional joint convolutional embedding for predicting
the final vessel segmentation.

2.3 Loss Function

The major learning objective of our JointVesselNet network is to extract the sparse
3D vasculature structure from the 3D MRA volume image using a 3D segmentation
network supplemented by information from the denser and more connected multiple
2D MIPs. Consequently the network loss function consists of two terms:

L = Lvox3D−2D
+ λLmip, (2)

where Lvox3D−2D
is the joint 3D-2D segmentation Dice loss defined as:

Lvox3D−2D
= − 2Σx∈V p(x)g(x) + δ

Σx∈V p(x) +Σx∈V g(x) + δ
, (3)

where p(x) and g(x) are the predicted voxel-wise vessel probability maps and ground
truth binary labels within the query volume patch V , respectively. δ is a smooth constan-
t. Lmip acts as a regularization term during training, which is also a Dice loss function
defined (similarly to Lvox3D−2D

) within the 2D composited MIP and supervised by the
ground truth MIP vessel binary labels. λ is the constant coefficient of Lmip, which is
set to be 0.2 for our best experiment performance.

3 Experiments and Results

For both datasets, we first apply the MR-based skull-stripping method [27] to extract
the pure brain from each MRA image. 3D training patches with the imbalanced dimen-
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sions are randomly-extracted with overlapping focusing on the brain area in a whole
3D MRA, e.g., 80 patches for each TubeTK case and 440 patches for each collaborative
clinical case. The random training / validation / testing case split is 33 / 3 / 6 and 6 /
2 / 3 for TubeTK dataset and the clinical dataset, respectively. The testing accuracy is
computed in the full brain patched with no overlap.

Our JointVesselNet network adopts the Adam optimizer with an initial learning rate
of 0.0001 with 0.5 as the learning decay factor and 10 epochs as the learning patience.
The network is implemented with the TensorFlow framework and the total training time
is about 10 hours on two NVIDIA GeForce GTX 1080 GPUs with 8 GB GDDR5X
memory. The source code of our method and datasets will be made available later.

We first compare our JointVesselNet performance on TubeTK dataset with four
state-of-the-art deep learning based methods (i.e., 3D U-Net [20], 2D U-Net [26], Deep-
VesselNet [22], and Uception [19]) and one classical parametric intensity-based method
(i.e., vesselness algorithm [5,11]) in 3D vessel segmentation. All deep learning methods
in comparison are trained until convergence by using the same dataset split or using the
results reported from their original publication (such as Uception). For 2D U-Net, we
train it with 128× 128 2D patches, whose amount is over 10 times of the amount of 3D
patches extracted for the 3D CNN based methods with on-the-fly data augmentation
for a fair data acquisition. For DeepVesselNet, we have tried different combination-
s of their data pre-processing processes and chosen the image intensity clipping for
obtaining an optimal performance on TubeTK dataset. For the evaluation on the clin-
ical dataset from our medical collaboration, we use the state-of-the-art model-driven
MRAnls method [25] mentioned in Sec. 2.1 to extract the vessels for comparison.

Four quantitative metrics, i.e., Dice Similarity (Dice), Sensitivity, Precision, and
False Positive Rate (FPR), are used for numerical evaluation. The performance com-
parison of different methods on TubeTK dataset is shown in Tab. 1. ‘−’ means ‘not
applicable’ due to the lack of their implementations or results. The best results in the
table are shown in bold font. From Tab. 1, we can see that our JointVesselNet has the
best overall performance among all the methods on TubeTK dataset. With the 2D com-
posited MIP feature integration, our network performs better than a pure 3D U-Net [20]
over all four different metrics. The qualitative comparison of MIP-wise (e.g., 5-sliced)
segmentation results and 3D global vessel segmentation results between our JointVes-
selNet and 3D U-Net (one of the most robust state-of-the-art deep learning based meth-
ods for biomedical image segmentation) is shown in Fig. 3. With the 2D composited
MIP complementary information, the final vessel segmentation shows better connectiv-
ity and better small vessel capturing compared to 3D U-Net, as marked in red circles
(3D global vessel segmentation visualization) and green circles (2D MIP vessel seg-
mentation visualization). Another observation is that 3D U-Net greatly outperforms 2D
U-Net [26] since the former method is able to capture the cross-slice continuity. That is
why 3D CNN should be involved in sparse 3D object segmentation with complex topol-
ogy. DeepVesselNet [22] fails to yield a good performance as reported in their dataset,
which could result from the lack of the pre-training procedure and the instability of
their loss function, as well as over-simplified network (e.g., five convolutional layer-
s). Our method also performs better than the best Uception result in [19] on TubeTK
dataset with even less data pre-processing procedure. We also employ the vesselness
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algorithm [5, 11], a widely-used approach to segment cylindrical vessel structures in
the medical field, as a traditional benchmark method for comparison. Last but not least,
all deep learning methods greatly outperform vesselness method on TubeTK dataset.

Table 1: Quantitative performance evaluation of different methods.

Metrics / Methods Ours 3D U-Net Uception DeepVesselNet 2D U-Net Vesselness

Dice (%) ↑ 71.81 71.01 67.01 64.12 65.10 37.71
Sensitivity (%) ↑ 79.33 75.99 66.02 63.20 73.93 65.34
Precision (%) ↑ 76.66 74.00 − 63.75 70.05 47.69

FPR (%) ↓ 0.0821 0.0958 − 0.1465 0.1041 0.1393
Note: Accuracy metric is not included here, since it is always very high (e.g.,≥ 99%) in highly sparse vessel data.

As mentioned in Sec. 2.1, our collaborative medical domain experts collect clinical
MRA datasets and use the state-of-the-art non-linear subtraction (MRAnls) method [25]
to extract the clean midbrain vessels, which tend to be a good physical indicator of sev-
eral cerebral diseases. MRAnls requires different data modalities and tedious manual
parameter-tuning; however, as shown in Fig. 3, its segmentation result still fails to be
free from location-dependent interference, such as superior sagittal sinus (red dotted cir-
cles in 3D visualization and green dotted circles in MIP visualization) and some random
noises (red solid circles). In order to improve the segmentation performance with lim-
ited data inventory (11 cases in total), we fine-tune our network pre-trained on TubeTK
dataset with six cases in the clinical dataset. Our network only needs TE1 pre-contrast
SWI (a single-modal MRA) data as input. The quantitative comparison results between
ours and MRAnls method are 82.98% / 80.60%, 83.77% / 82.26%, 83.69% / 82.07%,
0.0337% / 0.0354% for Dice, Sensitivity, Precision, and FPR, respectively. Our numer-
ic evaluation outperforms MRAnls method on all metrics. Fig. 3 further shows that our
vessel segmentation results are more continuous and cleaner than MRAnls results.

4 Conclusion

In this work, we have proposed a deep neural network method, JointVesselNet, to seg-
ment high-fidelity 3D cerebrovascular structure from MRA images. By backprojecting
the learned multislice composited 2D MIP feature vectors into the 3D volume embed-
ding space, the proposed framework can strengthen the sparse 3D vascular representa-
tion by better capturing the small vessels as well as improving the vessel connectivity,
which outperforms the state-of-the-art classical and deep learning based methods. In
medical practice, this work can be used as the key functions for real-time segmentation
and visualization of sparse and complicated 3D vasculature to improve MRA diagnosis.
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Fig. 3: Some qualitative comparison results from two datasets. 3D global vessel segmentations are
shown from superior direction. Two MIP segmentations are visualized by 5-sliced MRA images.
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