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1 THEORETICAL AUXILIARIES
1.1

Here we list the angular momentum operators Ly, Ly, L, and corre-
sponding rotation matrices:

Angular Momentum Operators and Rotation Matrices

Ly = Diag(0, L?, L¥) e R15%15,

Ly = Diag(0, LY, L\ e RI*15,

L, = Diag(0,L{¥, 1Y) e R15%15,

e% L= = Diag(1, R? (67), R (67)) € R¥¥15,
¢%'tv = Diag(1, R (69), R (67)) € RIX15,
¢%Lx = Diag(1, R (67), R (6)) € RI%*D,
Ry(6Y) = Re(n/2)R- (0] Ry (n/2)T,

Rx(6F) = Ry(n/2)TR-(67)Ry(n/2),
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1.2 Canonical Odeco Tensor

The full expression of the canonical odeco tensor f(A;) € R is
represented by bands 0, 2, and 4 of SH as follows:
FA) = 1FO %) fP Q). f@ ()] e RN xRS xR,
2

FOQ) = SVr Q5+ +29),

A 4 [n ., x 4 (37,
FB @) =100, ;\Emi ~(F + 210,047 (GF =2))],

[0,0,0,0, %ﬁ(a;‘ +A] + gﬂtf),
T

A TG a0 2 G by,

0, 21\/;(/11 .05 35 4 + A1)

1.3 Normal-Aligned Boundary Odeco Tensor

1

For a boundary vertex on the boundary i € 9Q with normal di-
rection n; € R3, we only allow rotation around the normal di-
rection, which leaves us to only having 67 as the only variable.
Let (p, @) represent the spherical coordinates of the direction n;
such that n; = ||n;||(sinpcosg, sinpsing, cosp), the rotation matrix
R; € RP*1 which brings the z axis to #; can be rewritten as
R; = e?lzePly = e‘PLze%LxePLZe%LxT.Thus, R;isaconstant 15X15
matrix determined by ;. Combining with the rotation %Lz around
the z-axis, we obtain

(6, 7;) = Rie%L=BA;, Vi€ aQ. )

1.4 Proof of Proposition 5.1

Let f(0i,A;),i € 9Q (for short f;) be a normal-aligned odeco field
on a smooth surface 0Q with the corresponding stretching ratios
(/1?‘ R Aiy, Af). We first set a local parametrization to a point i* of the
embedding via v; : R — R3, where v; is the axis-angle rota-
tion from fi+ to f;. Let axes (u, v) denote the principal curvature
directions and become the local coordinates in the tangent plane.
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Without loss of generality, we rotate the normal of the point i* to
axis z. However, the default axes (x,y) that define the canonical
odeco tensor in the tangent plane are usually not (g, v). Therefore,
we let ¢ denote the rotation angle that rotates the axes (x,y) to
axes (, v). Then, the odeco tensor f; is expressed as:

= @il Le Ly L] 07 L Lz o

where 07 is the free rotation angle around the normal. Note that,
07 (p, v) = 0in terms of the way defined in Eq. (6) in our manuscript.
Let f = e¢L1f and r(p,v) = [} (p, v),viy(y, v),0] + [0,0,07] for
shorthand, we obtain f; = e’ [Lx Ly L] f. Following the gradient for-
mula Vf(u, v)|.. derived from [Zhang et al. 2020] for the octahedral
frames,

i

N .
w = |Laf Lyf Lzf||Vur Vor| .
R (N

The squared norm ||V f(p, v)||§ at point i* is

IVf(v)II5 =
. (I .
Tr(|Vur Vyr| |Lxfir Lyf Lf
I I
R
Lyf Lyf L f||Vur Vyr|).
[ .

According to the expression of Eq. (1) and f = e¢sz, we get

Vi v)

T T

f= [éﬁml + g+ A3), sin(2¢)§\/¥(/11 ~ 290,

;@(2/13 - (41 +42)),0, 008(295);\/?(/11 - A2),
sin(4¢>§\/§ (A1 +22),0, —sin<z¢>%\/§ (A1 = 22),0,

2 8
g\/;(/h +A2 + 5/13)>

0, —cos(2¢>)zil\/§ (A1 = A2).0, cos(4¢)§\/§ (A +A2)].

It is easy to verify that f;+LT L,fir = 0 for V¢ € R mn €
{{y. 2z}, {x,z}}. Given that p, v are aligned with principal curva-

ture directions, and Kpqx, Kmin are principal curvatures at point i,

¥ v v’ ;
— L — 1 o 1 -— . 1 —
we have Fri 0, 5% = Kmax, ¥ Kmin, 5+ = 0. Therefore, we

obtain
IVF ()3 =
vy duy T _ _ vy duy
v fLILf | 0 v
dv;  Iv; 1T r v, Jv;
Tr( ou v | fLyLyf _ 0 _| | op v )
207 967 0 0  fLIL,f||067 o067
op ov op v
T £\ 172 T &~ 172 rrT a3 aeiz 2 aeiz 2
= (fofo)Kmax+(fLyLyf)ijn+(szLZf)((E) +(W) )
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Then, we derive

FLILeS = cos*(§)g1(As) + sin($)g2(As),

FLLyf = sin®($)g1(Ai) + cos® ($)g2(A4),

FLIL.f = g3(Aa),
where gi(1;) = 634T’5’(4(A;” - /1;’)2 + (A + A;’)Z), mn €
{y, 2z}, {x, z}, {x,y}} for k = 1,2,3. Finally, substituting o to
(%)2 + (%)2, the square norm ||V f (g, v)||§ is re-expressed as

V(w5 =

(cos?($)g1 (A1) + sin®($)ga (A1) Kagx+
(sin®($)g1 (A1) + cos®($)ga (A1) KZy i+
g3 Ai)w.

The smoothness energy [|Vf] |§ is divided into the extrinsic
curvature-aligned term (cos?(¢)g1(A;) + sin®(¢)g2(Ai)) Kz ax +
(sin®()g1(A;) + cos®(¢)ga (Ai))Krzm.n and the intrinsic tangential
twisting term g3 (A ;).

1.5 Proof of Proposition 5.2
We denote

a(¢, Ai) = cos®($)g1(Ai) + sin®($)gz (A1),
b(¢, Ai) = sin®($)g1(Ai) + cos® ($)gz(As).

Thus, the curvature-aligned term is re-express as a(¢, A;) K24, +
b(¢,A;)K2 . for short, where

a(g, Ai) +b(¢, Ai) = g1(Ai) + g2(A4).
Clearly,

G2(0) = g1 (A) = COZ =2 C U5+ Af) = J8).

If A¥ # A and A7 # 2(AF + 1)), we have g2(A;) # g1(A:), as well
as a(¢, Ai) # b(¢, Ai). Given that Ky is the minimum principal
curvature, therefore, minimizing a(¢, 1;)K2,,, + b(gzﬁ,)»,-)Kanm is
equivalent to minimize a(¢, A;). It follows that, a(4, A;) will be
minimized if sin®(¢) goes to 0 or 1, which reveals that the odeco
tensor lobes need to be aligned with principal curvature directions.

Moreover, when Aiz < %(A;C + /1?), here we assume that ).f > /’lly,
we have g2(A;) > g1(A;). When go(A;) > g1(A;) and sin®($) goes
to 0, a($, A;) will be minimized. A7 > /Il.y and sin®(¢$) = 0 indicate
exact alignment between the lobe with a larger stretching ratio
and the minimum principal curvature direction. Similarly, the same
result will be obtained when 1Y < Aiy.

1.6 Proof of Proposition 5.3

Let fi, f> represent two normal-aligned odeco tensors whose tangent
planes are intersected at the feature edges. We let fi, fo have the
same stretching ratios due to the continuity in a local area. Let
@1, ¢2 denote the deviation angles between the lobe with the larger
stretching ratio on the tangent plane and the direction of the feature
edge. Without loss of generality, we let f be the canonical odeco
tensor, fi = e?1Lz f and f; = e9Lve¥2lz f, where § is the dihedral

angle between two tangent planes. The difference between these
two odeco tensors is

D(p1.02) = lIfi - foll5
- ||e</’1sz_ e5Lye<P2sz‘||§

— (qulefA _ e&Lye(ﬂszfA)T(e(plefA _ €5Ly€<p2szA).

We assume D(¢1, ¢2) is minimized by ¢1 = ¢2 = 0 £ nm,n € Z,
since D is only composed of lots of terms of cos(2¢1), cos(2¢2), we
only need to prove D(0, 0) is the minimum for all A;‘ > Al:l/, /11?, d,1ie.,
the solution (g1, ¢2) of D(¢1, ¢2) — D(0,0) < 0 is empty. To avoid
matrix exponential computations, we provide the related rotation
matrices in Section 1.1. By denoting e?1lz opi1lz oOLy 4 Rz(¢1),
Rz(¢2), Ry(a), respectively. We have

D(¢1,¢2) — D(0,0) =

(Rz(¢1)f = Ry(@)Rz(p2) /)" (Re(p1)f ~ Ry(e)Rz(¢2)f)

= (f = Ry(@ N (f =~ Ry(a) ).
Our proof is assisted by the MATLAB Symbolic computations. For
any given AY > Aiy, A%, 6, the solution of D(¢1, ¢2) — D(0,0) < 0

remains empty. Besides that, Fig. 4 in our manuscript demonstrates
the function of D(¢1, ¢2) for a specific case.

1.7 A Simple Demo for Proposition 5.2

In Fig. S1, we validate the theoretical analysis of Proposition 5.2 by
a simple demo. Here, we specify three different stretching ratios for
the entire domain. For each A;, we have 5: 1:1 (A7 < g(/lf + Aly))
in Fig. S1 (a),5:1:8 (A7 > 2(A¥ + 1/)) in Fig. S1 (b), and 5:1: 5
7= %(Af + ).ly)) in Fig. S1 (c). Compared with the distribution of
local minima of random trials, case (c) is highly non-convex. Both
(a) and (b) only need a single trial to achieve global minimum for the
Torus model. However, it is hard to find the global minimum for (c)
since the curvature guidance disappears according to Proposition
5.2.

4000  Distributjon of 4000  Distribution of 4000 Distribution of
local minima local minima local minima
3000 3000 3000
E E E
2000 3 2000 2 2000 2
O o o
1000 1000 1000
0 0 0 _ ‘
0.10 0.14 018 13 15 18 0.7 0.9 11

Fig. S1. Evaluation on the setting of stretching ratios Ag". Top: (a, b, c) are
optimal solutions with different specified stretching ratios. Bottom: the
distributions of 4, 000 local minima of random trials for each case. (a,b) only
need one trial to get the global minimum; however, (c) takes lots of trials to
find the global minimum.
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