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1 THEORETICAL AUXILIARIES

1.1 Angular Momentum Operators and Rotation Matrices
Here we list the angular momentum operators 𝑳𝑥 , 𝑳𝑦, 𝑳𝑧 and corre-
sponding rotation matrices:

𝑳𝑥 = 𝐷𝑖𝑎𝑔(0, 𝑳 (2)
𝑥 , 𝑳 (4)

𝑥 ) ∈ R15×15,

𝑳𝑦 = 𝐷𝑖𝑎𝑔(0, 𝑳 (2)
𝑦 , 𝑳 (4)

𝑦 ) ∈ R15×15,

𝑳𝑧 = 𝐷𝑖𝑎𝑔(0, 𝑳 (2)
𝑧 , 𝑳 (4)

𝑧 ) ∈ R15×15,

𝑒𝜃
𝑧
𝑖
𝑳𝑧 = 𝐷𝑖𝑎𝑔(1, 𝑹 (2)

𝑧 (𝜃𝑧𝑖 ), 𝑹
(4)
𝑧 (𝜃𝑧𝑖 )) ∈ R15×15,

𝑒𝜃
𝑦

𝑖
𝑳𝑦 = 𝐷𝑖𝑎𝑔(1, 𝑹 (2)

𝑦 (𝜃𝑦
𝑖
), 𝑹 (4)

𝑦 (𝜃𝑦
𝑖
)) ∈ R15×15,

𝑒𝜃
𝑥
𝑖
𝑳𝑥 = 𝐷𝑖𝑎𝑔(1, 𝑹 (2)

𝑥 (𝜃𝑥𝑖 ), 𝑹
(4)
𝑥 (𝜃𝑥𝑖 )) ∈ R15×15,

𝑹𝑦 (𝜃𝑦𝑖 ) = 𝑹𝑥 (𝜋/2)𝑹𝑧 (𝜃𝑦𝑖 )𝑹𝑥 (𝜋/2)𝑇 ,

𝑹𝑥 (𝜃𝑥𝑖 ) = 𝑹𝑦 (𝜋/2)𝑇 𝑹𝑧 (𝜃𝑥𝑖 )𝑹𝑦 (𝜋/2),

𝑳 (2)
𝑥 =


0 0 0 −1 0
0 0 −

√
3 0 −1

0
√

3 0 0 0
1 0 0 0 0
0 1 0 0 0


, 𝑳 (2)

𝑦 =


0 1 0 0 0
−1 0 0 0 0
0 0 0 −

√
3 0

0 0
√

3 0 −1
0 0 0 1 0


,
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𝑳 (2)
𝑧 =


0 0 0 0 2
0 0 0 1 0
0 0 0 0 0
0 −1 0 0 0
−2 0 0 0 0


, 𝑳 (4)

𝑧 =



0 0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 2 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 −2 0 0 0 0 0 0
0 −3 0 0 0 0 0 0 0
−4 0 0 0 0 0 0 0 0


,

𝑳 (4)
𝑥 =



0 0 0 0 0 0 0 −
√

2 0
0 0 0 0 0 0 −

√
7

2 0 −
√

2
0 0 0 0 0 − 3√

2
0 −

√
7

2 0
0 0 0 0 −

√
10 0 − 3√

2
0 0

0 0 0
√

10 0 0 0 0 0
0 0 3√

2
0 0 0 0 0 0

0
√

7
2 0 3√

2
0 0 0 0 0

√
2 0

√
7

2 0 0 0 0 0 0
0

√
2 0 0 0 0 0 0 0



,

𝑳 (4)
𝑦 =



0
√

2 0 0 0 0 0 0 0
−
√

2 0
√

7
2 0 0 0 0 0 0

0 −
√

7
2 0 3√

2
0 0 0 0 0

0 0 − 3√
2

0 0 0 0 0 0
0 0 0 0 0

√
10 0 0 0

0 0 0 0
√

10 0 − 3√
2

0 0

0 0 0 0 0 3√
2

0 −
√

7
2 0

0 0 0 0 0 0
√

7
2 0 −

√
2

0 0 0 0 0 0 0
√

2 0



,

𝑹 (2)
𝑥 ( 𝜋

2
) =



0 0 0 −1 0
0 −1 0 0 0
0 0 − 1

2 0 −
√

3
2

1 0 0 0 0
0 0 −

√
3

2 0 1
2


,

𝑹 (2)
𝑧 (𝜃𝑧𝑖 ) =


𝑐𝑜𝑠 (2𝜃𝑧

𝑖
) 0 0 0 𝑠𝑖𝑛(2𝜃𝑧

𝑖
)

0 𝑐𝑜𝑠 (𝜃𝑧
𝑖
) 0 𝑠𝑖𝑛(𝜃𝑧

𝑖
) 0

0 0 1 0 0
0 −𝑠𝑖𝑛(𝜃𝑧

𝑖
) 0 𝑐𝑜𝑠 (𝜃𝑧

𝑖
) 0

−𝑠𝑖𝑛(2𝜃𝑧
𝑖
) 0 0 0 𝑐𝑜𝑠 (2𝜃𝑧

𝑖
)


,
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𝑹 (4)
𝑧 (𝜃𝑧𝑖 ) =



𝑐𝑜𝑠 (4𝜃𝑧
𝑖
) 0 0 0 0 0 0 0 𝑠𝑖𝑛(4𝜃𝑧

𝑖
)

0 𝑐𝑜𝑠 (3𝜃𝑧
𝑖
) 0 0 0 0 0 𝑠𝑖𝑛(3𝜃𝑧

𝑖
) 0

0 0 𝑐𝑜𝑠 (2𝜃𝑧
𝑖
) 0 0 0 𝑠𝑖𝑛(2𝜃𝑧

𝑖
) 0 0

0 0 0 𝑐𝑜𝑠 (𝜃𝑧
𝑖
) 0 𝑠𝑖𝑛(𝜃𝑧

𝑖
) 0 0 0

0 0 0 0 1 0 0 0 0
0 0 0 −𝑠𝑖𝑛(𝜃𝑧

𝑖
) 0 𝑐𝑜𝑠 (𝜃𝑧

𝑖
) 0 0 0

0 0 −𝑠𝑖𝑛(2𝜃𝑧
𝑖
) 0 0 0 𝑐𝑜𝑠 (2𝜃𝑧

𝑖
) 0 0

0 −𝑠𝑖𝑛(3𝜃𝑧
𝑖
) 0 0 0 0 0 𝑐𝑜𝑠 (3𝜃𝑧

𝑖
) 0

−𝑠𝑖𝑛(4𝜃𝑧
𝑖
) 0 0 0 0 0 0 0 𝑐𝑜𝑠 (4𝜃𝑧

𝑖
)


,

𝑹 (4)
𝑥 ( 𝜋

2
) =



0 0 0 0 0
√

14
4 0 −

√
2

4 0
0 − 3

4 0
√

7
4 0 0 0 0 0

0 0 0 0 0
√

2
4 0

√
14
4 0

0
√

7
4 0 3

4 0 0 0 0 0
0 0 0 0 3

8 0
√

5
4 0

√
35
8

−
√

14
4 0 −

√
2

4 0 0 0 0 0 0
0 0 0 0

√
5

4 0 1
2 0 −

√
7

4√
2

4 0 −
√

14
4 0 0 0 0 0 0

0 0 0 0
√

35
8 0 −

√
7

4 0 1
8



.

1.2 Canonical Odeco Tensor
The full expression of the canonical odeco tensor 𝑓 (𝝀𝑖 ) ∈ R15 is
represented by bands 0, 2, and 4 of SH as follows:

𝑓 (𝝀𝑖 ) = [𝑓 (0) (𝝀𝑖 ), 𝑓 (2) (𝝀𝑖 ), 𝑓 (4) (𝝀𝑖 )] ∈ R1 × R5 × R9,

𝑓 (0) (𝝀𝑖 ) =
2
5
√
𝜋 (𝜆𝑥𝑖 + 𝜆𝑦

𝑖
+ 𝜆𝑧𝑖 ),

𝑓 (2) (𝝀 𝒊) = [0, 0, 4
7

√︂
𝜋

5
(2𝜆𝑧𝑖 − (𝜆𝑥𝑖 + 𝜆𝑦

𝑖
)), 0, 4

7

√︂
3𝜋
5
(𝜆𝑥𝑖 − 𝜆𝑦

𝑖
)],

𝑓 (4) (𝝀𝑖 ) =
[0, 0, 0, 0, 2

35
√
𝜋 (𝜆𝑥𝑖 + 𝜆𝑦

𝑖
+ 8

3
𝜆𝑧𝑖 ),

0,− 4
21

√︂
𝜋

5
(𝜆𝑥𝑖 − 𝜆𝑦

𝑖
), 0, 2

3

√︂
𝜋

35
(𝜆𝑥𝑖 + 𝜆𝑦

𝑖
)] .

(1)

1.3 Normal-Aligned Boundary Odeco Tensor
For a boundary vertex on the boundary 𝑖 ∈ 𝜕Ω with normal di-
rection ®𝒏𝑖 ∈ R3, we only allow rotation around the normal di-
rection, which leaves us to only having 𝜃𝑧

𝑖
as the only variable.

Let (𝜌, 𝜑) represent the spherical coordinates of the direction ®𝒏𝑖
such that ®𝒏𝑖 = | |®𝒏𝑖 | | (𝑠𝑖𝑛𝜌𝑐𝑜𝑠𝜑, 𝑠𝑖𝑛𝜌𝑠𝑖𝑛𝜑, 𝑐𝑜𝑠𝜌), the rotation matrix
𝑹𝑖 ∈ R15×15 which brings the 𝒛 axis to ®𝒏𝑖 can be rewritten as
𝑹𝑖 = 𝑒𝜑L𝑧𝑒

𝜌L𝑦 = 𝑒𝜑L𝑧𝑒
𝜋
2 L𝑥 𝑒𝜌L𝑧𝑒

𝜋
2 L𝑥

𝑇
. Thus, 𝑹𝑖 is a constant 15×15

matrix determined by ®𝒏𝑖 . Combining with the rotation 𝑒𝜃
𝑧
𝑖
L𝑧 around

the 𝑧-axis, we obtain

𝑓 (𝜽 𝑖 ,𝝀𝑖 ) = 𝑹𝑖𝑒
𝜃𝑧
𝑖
L𝑧𝑩𝝀𝑖 , ∀𝑖 ∈ 𝜕Ω. (2)

1.4 Proof of Proposition 5.1
Let 𝑓 (𝜽 𝑖 ,𝝀𝑖 ), 𝑖 ∈ 𝜕Ω (for short 𝑓𝑖 ) be a normal-aligned odeco field
on a smooth surface 𝜕Ω with the corresponding stretching ratios
(𝜆𝑥

𝑖
, 𝜆

𝑦

𝑖
, 𝜆𝑧

𝑖
). We first set a local parametrization to a point 𝑖∗ of the

embedding via 𝒗𝑖 : R15 → R3, where 𝒗𝑖 is the axis-angle rota-
tion from 𝑓𝑖∗ to 𝑓𝑖 . Let axes (𝝁,𝝂) denote the principal curvature
directions and become the local coordinates in the tangent plane.

Without loss of generality, we rotate the normal of the point 𝑖∗ to
axis 𝒛. However, the default axes (𝒙,𝒚) that define the canonical
odeco tensor in the tangent plane are usually not (𝝁,𝝂). Therefore,
we let 𝜙 denote the rotation angle that rotates the axes (𝒙,𝒚) to
axes (𝝁,𝝂). Then, the odeco tensor 𝑓𝑖 is expressed as:

𝑓𝑖 = 𝑒
𝒗𝑖 · [𝑳𝑥 𝑳𝑦 𝑳𝑧 ]𝑒𝜃

𝑧
𝑖
𝑳𝑧𝑒𝜙𝑳𝑧 𝑓 ,

where 𝜃𝑧
𝑖
is the free rotation angle around the normal. Note that,

𝑣𝑧
𝑖
(𝝁,𝝂) = 0 in terms of the way defined in Eq. (6) in our manuscript.

Let 𝑓 = 𝑒𝜙𝑳𝑧 𝑓 and 𝑟 (𝝁,𝝂) = [𝑣𝑥
𝑖
(𝝁,𝝂), 𝑣𝑦

𝑖
(𝝁,𝝂), 0] + [0, 0, 𝜃𝑧

𝑖
] for

shorthand, we obtain 𝑓𝑖 = 𝑒𝑟 · [𝑳𝑥 𝑳𝑦 𝑳𝑧 ] 𝑓 . Following the gradient for-
mula ∇𝑓 (𝝁,𝝂)

��
𝑖∗ derived from [Zhang et al. 2020] for the octahedral

frames,

∇𝑓 (𝝁,𝝂)
��
𝑖∗ =


| | |

𝑳𝑥 𝑓 𝑳𝑦 𝑓 𝑳𝑧 𝑓
| | |




| |
∇𝝁𝑟 ∇𝝂𝑟

| |

𝑖∗ .
The squared norm | |∇𝑓 (𝝁,𝝂) | |22 at point 𝑖∗ is

| |∇𝑓 (𝝁,𝝂) | |22 =

𝑇𝑟 (


| |
∇𝝁𝑟 ∇𝝂𝑟

| |


𝑇 

| | |
𝑳𝑥 𝑓𝑖∗ 𝑳𝑦 𝑓 𝑳𝑧 𝑓
| | |


𝑇


| | |

𝑳𝑥 𝑓 𝑳𝑦 𝑓 𝑳𝑧 𝑓
| | |




| |
∇𝝁𝑟 ∇𝝂𝑟

| |

) .
According to the expression of Eq. (1) and 𝑓 = 𝑒𝜙𝑳𝑧 𝑓 , we get

𝑓 = [ 2
5
√
𝜋 (𝜆1 + 𝜆2 + 𝜆3), 𝑠𝑖𝑛(2𝜙)

4
7

√︂
3𝜋
5
(𝜆1 − 𝜆2), 0,

4
7

√︂
𝜋

5
(2𝜆3 − (𝜆1 + 𝜆2)), 0, 𝑐𝑜𝑠 (2𝜙)

4
7

√︂
3𝜋
5
(𝜆1 − 𝜆2),

𝑠𝑖𝑛(4𝜙) 2
3

√︂
𝜋

35
(𝜆1 + 𝜆2), 0,−𝑠𝑖𝑛(2𝜙)

4
21

√︂
𝜋

5
(𝜆1 − 𝜆2), 0,

2
35

√
𝜋 (𝜆1 + 𝜆2 +

8
3
𝜆3),

0,−𝑐𝑜𝑠 (2𝜙) 4
21

√︂
𝜋

5
(𝜆1 − 𝜆2), 0, 𝑐𝑜𝑠 (4𝜙)

2
3

√︂
𝜋

35
(𝜆1 + 𝜆2)] .

It is easy to verify that 𝑓𝑖∗𝑳𝑇𝑚𝑳𝑛 𝑓𝑖∗ = 0 for ∀𝜙 ∈ R 𝑚,𝑛 ∈
{{𝑦, 𝑧}, {𝑥, 𝑧}}. Given that 𝝁,𝝂 are aligned with principal curva-
ture directions, and 𝐾𝑚𝑎𝑥 , 𝐾𝑚𝑖𝑛 are principal curvatures at point 𝑖∗,

we have 𝜕𝑣𝑥
𝑖

𝜕𝝁 = 0, 𝜕𝑣
𝑥
𝑖

𝜕𝝂 = 𝐾𝑚𝑎𝑥 ,
𝜕𝑣

𝑦

𝑖

𝜕𝝁 = 𝐾𝑚𝑖𝑛 ,
𝜕𝑣

𝑦

𝑖

𝜕𝝂 = 0. Therefore, we
obtain

| |∇𝑓 (𝝁,𝝂) | |22 =

𝑇𝑟 (


𝜕𝑣𝑥

𝑖

𝜕𝝁
𝜕𝑣𝑥

𝑖

𝜕𝝂
𝜕𝑣

𝑦

𝑖

𝜕𝝁
𝜕𝑣

𝑦

𝑖

𝜕𝝂
𝜕𝜃𝑧

𝑖

𝜕𝝁
𝜕𝜃𝑧

𝑖

𝜕𝝂


𝑇 

𝑓 𝑳𝑇𝑥 𝑳𝑥 𝑓 | 0
| 𝑓 𝑳𝑇𝑦𝑳𝑦 𝑓 0
0 0 𝑓 𝑳𝑇𝑧 𝑳𝑧 𝑓



𝜕𝑣𝑥

𝑖

𝜕𝝁
𝜕𝑣𝑥

𝑖

𝜕𝝂
𝜕𝑣

𝑦

𝑖

𝜕𝝁
𝜕𝑣

𝑦

𝑖

𝜕𝝂
𝜕𝜃𝑧

𝑖

𝜕𝝁
𝜕𝜃𝑧

𝑖

𝜕𝝂

)
= (𝑓 𝑳𝑇𝑥 𝑳𝑥 𝑓 )𝐾2

𝑚𝑎𝑥 + (𝑓 𝑳𝑇𝑦𝑳𝑦 𝑓 )𝐾2
𝑚𝑖𝑛 + (𝑓 𝑳𝑇𝑧 𝑳𝑧 𝑓 ) ((

𝜕𝜃𝑧
𝑖

𝜕𝝁
)2 + (

𝜕𝜃𝑧
𝑖

𝜕𝝂
)2).
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Then, we derive

𝑓 𝑳𝑇𝑥 𝑳𝑥 𝑓 = 𝑐𝑜𝑠2 (𝜙)𝑔1 (𝝀𝒊) + 𝑠𝑖𝑛2 (𝜙)𝑔2 (𝝀𝒊),

𝑓 𝑳𝑇𝑦𝑳𝑦 𝑓 = 𝑠𝑖𝑛2 (𝜙)𝑔1 (𝝀𝒊) + 𝑐𝑜𝑠2 (𝜙)𝑔2 (𝝀𝒊),

𝑓 𝑳𝑇𝑧 𝑳𝑧 𝑓 = 𝑔3 (𝝀𝒊),

where 𝑔𝑖 (𝝀𝒊) = 64𝜋
315 (4(𝜆

𝑚
𝑖

− 𝜆𝑛
𝑖
)2 + (𝜆𝑚

𝑖
+ 𝜆𝑛

𝑖
)2), 𝑚, 𝑛 ∈

{{𝑦, 𝑧}, {𝑥, 𝑧}, {𝑥,𝑦}} for 𝑘 = 1, 2, 3. Finally, substituting 𝜔 to
( 𝜕𝜃

𝑧
𝑖

𝜕𝝁 )2 + ( 𝜕𝜃
𝑧
𝑖

𝜕𝝂 )2, the square norm | |∇𝑓 (𝝁,𝝂) | |22 is re-expressed as

| |∇𝑓 (𝝁,𝝂) | |22 =

(𝑐𝑜𝑠2 (𝜙)𝑔1 (𝝀𝒊) + 𝑠𝑖𝑛2 (𝜙)𝑔2 (𝝀𝒊))𝐾2
𝑚𝑎𝑥+

(𝑠𝑖𝑛2 (𝜙)𝑔1 (𝝀𝒊) + 𝑐𝑜𝑠2 (𝜙)𝑔2 (𝝀𝒊))𝐾2
𝑚𝑖𝑛+

𝑔3 (𝝀𝒊)𝜔.

The smoothness energy | |∇𝑓 | |22 is divided into the extrinsic
curvature-aligned term (𝑐𝑜𝑠2 (𝜙)𝑔1 (𝝀𝒊) + 𝑠𝑖𝑛2 (𝜙)𝑔2 (𝝀𝒊))𝐾2

𝑚𝑎𝑥 +
(𝑠𝑖𝑛2 (𝜙)𝑔1 (𝝀𝒊) + 𝑐𝑜𝑠2 (𝜙)𝑔2 (𝝀𝒊))𝐾2

𝑚𝑖𝑛
and the intrinsic tangential

twisting term 𝑔3 (𝝀𝒊)𝜔 .

1.5 Proof of Proposition 5.2
We denote

𝑎(𝜙,𝝀𝒊) = 𝑐𝑜𝑠2 (𝜙)𝑔1 (𝝀𝒊) + 𝑠𝑖𝑛2 (𝜙)𝑔2 (𝝀𝒊),
𝑏 (𝜙,𝝀𝒊) = 𝑠𝑖𝑛2 (𝜙)𝑔1 (𝝀𝒊) + 𝑐𝑜𝑠2 (𝜙)𝑔2 (𝝀𝒊) .

Thus, the curvature-aligned term is re-express as 𝑎(𝜙,𝝀𝒊)𝐾2
𝑚𝑎𝑥 +

𝑏 (𝜙,𝝀𝒊)𝐾2
𝑚𝑖𝑛

for short, where

𝑎(𝜙,𝝀𝒊) + 𝑏 (𝜙,𝝀𝒊) = 𝑔1 (𝝀𝒊) + 𝑔2 (𝝀𝒊).

Clearly,

𝑔2 (𝝀𝒊) − 𝑔1 (𝝀𝒊) = 𝐶 (𝜆𝑥𝑖 − 𝜆𝑦
𝑖
) ( 5

6
(𝜆𝑥𝑖 + 𝜆𝑦

𝑖
) − 𝜆𝑧𝑖 ).

If 𝜆𝑥
𝑖
≠ 𝜆

𝑦

𝑖
and 𝜆𝑧

𝑖
≠ 5

6 (𝜆
𝑥
𝑖
+ 𝜆𝑦

𝑖
), we have 𝑔2 (𝝀𝒊) ≠ 𝑔1 (𝝀𝒊), as well

as 𝑎(𝜙,𝝀𝒊) ≠ 𝑏 (𝜙,𝝀𝒊). Given that 𝐾𝑚𝑖𝑛 is the minimum principal
curvature, therefore, minimizing 𝑎(𝜙,𝝀𝒊)𝐾2

𝑚𝑎𝑥 + 𝑏 (𝜙,𝝀𝒊)𝐾2
𝑚𝑖𝑛

is
equivalent to minimize 𝑎(𝜙,𝝀𝒊). It follows that, 𝑎(𝜙,𝝀𝒊) will be
minimized if 𝑠𝑖𝑛2 (𝜙) goes to 0 or 1, which reveals that the odeco
tensor lobes need to be aligned with principal curvature directions.

Moreover, when 𝜆𝑧
𝑖
< 5

6 (𝜆
𝑥
𝑖
+ 𝜆𝑦

𝑖
), here we assume that 𝜆𝑥

𝑖
> 𝜆

𝑦

𝑖
,

we have 𝑔2 (𝝀𝒊) > 𝑔1 (𝝀𝒊). When 𝑔2 (𝝀𝒊) > 𝑔1 (𝝀𝒊) and 𝑠𝑖𝑛2 (𝜙) goes
to 0, 𝑎(𝜙,𝝀𝒊) will be minimized. 𝜆𝑥

𝑖
> 𝜆

𝑦

𝑖
and 𝑠𝑖𝑛2 (𝜙) = 0 indicate

exact alignment between the lobe with a larger stretching ratio
and the minimum principal curvature direction. Similarly, the same
result will be obtained when 𝜆𝑥

𝑖
< 𝜆

𝑦

𝑖
.

1.6 Proof of Proposition 5.3
Let 𝑓1, 𝑓2 represent two normal-aligned odeco tensors whose tangent
planes are intersected at the feature edges. We let 𝑓1, 𝑓2 have the
same stretching ratios due to the continuity in a local area. Let
𝜑1, 𝜑2 denote the deviation angles between the lobe with the larger
stretching ratio on the tangent plane and the direction of the feature
edge. Without loss of generality, we let 𝑓 be the canonical odeco
tensor, 𝑓1 = 𝑒𝜑1𝑳𝑧 𝑓 and 𝑓2 = 𝑒𝛿𝑳𝑦𝑒𝜑2𝑳𝑧 𝑓 , where 𝛿 is the dihedral

angle between two tangent planes. The difference between these
two odeco tensors is

𝐷 (𝜑1, 𝜑2) = | |𝑓1 − 𝑓2 | |22
= | |𝑒𝜑1𝑳𝑧 𝑓 − 𝑒𝛿𝑳𝑦𝑒𝜑2𝑳𝑧 𝑓 | |22
= (𝑒𝜑1𝑳𝑧 𝑓 − 𝑒𝛿𝑳𝑦𝑒𝜑2𝑳𝑧 𝑓 )𝑇 (𝑒𝜑1𝑳𝑧 𝑓 − 𝑒𝛿𝑳𝑦𝑒𝜑2𝑳𝑧 𝑓 ) .

We assume 𝐷 (𝜑1, 𝜑2) is minimized by 𝜑1 = 𝜑2 = 0 ± 𝑛𝜋, 𝑛 ∈ Z,
since 𝐷 is only composed of lots of terms of 𝑐𝑜𝑠 (2𝜑1), 𝑐𝑜𝑠 (2𝜑2), we
only need to prove 𝐷 (0, 0) is the minimum for all 𝜆𝑥

𝑖
≥ 𝜆

𝑦

𝑖
, 𝜆𝑧

𝑖
, 𝛿 , i.e.,

the solution (𝜑1, 𝜑2) of 𝐷 (𝜑1, 𝜑2) − 𝐷 (0, 0) < 0 is empty. To avoid
matrix exponential computations, we provide the related rotation
matrices in Section 1.1. By denoting 𝑒𝜑1𝑳𝑧 , 𝑒𝜑1𝑳𝑧 , 𝑒𝛿𝑳𝑦 as 𝑅𝑧 (𝜑1),
𝑅𝑧 (𝜑2), 𝑅𝑦 (𝛼), respectively. We have

𝐷 (𝜑1, 𝜑2) − 𝐷 (0, 0) =

(𝑅𝑧 (𝜑1) 𝑓 − 𝑅𝑦 (𝛼)𝑅𝑧 (𝜑2) 𝑓 )𝑇 (𝑅𝑧 (𝜑1) 𝑓 − 𝑅𝑦 (𝛼)𝑅𝑧 (𝜑2) 𝑓 )

− (𝑓 − 𝑅𝑦 (𝛼) 𝑓 )𝑇 (𝑓 − 𝑅𝑦 (𝛼) 𝑓 ) .
Our proof is assisted by the MATLAB Symbolic computations. For
any given 𝜆𝑥

𝑖
≥ 𝜆

𝑦

𝑖
, 𝜆𝑧

𝑖
, 𝛿 , the solution of 𝐷 (𝜑1, 𝜑2) − 𝐷 (0, 0) < 0

remains empty. Besides that, Fig. 4 in our manuscript demonstrates
the function of 𝐷 (𝜑1, 𝜑2) for a specific case.

1.7 A Simple Demo for Proposition 5.2
In Fig. S1, we validate the theoretical analysis of Proposition 5.2 by
a simple demo. Here, we specify three different stretching ratios for
the entire domain. For each 𝝀𝑖 , we have 5 : 1 : 1 (𝜆𝑧

𝑖
< 5

6 (𝜆
𝑥
𝑖
+ 𝜆𝑦

𝑖
))

in Fig. S1 (a), 5 : 1 : 8 (𝜆𝑧
𝑖
> 5

6 (𝜆
𝑥
𝑖
+ 𝜆𝑦

𝑖
)) in Fig. S1 (b), and 5 : 1 : 5

(𝜆𝑧
𝑖
= 5

6 (𝜆
𝑥
𝑖
+ 𝜆𝑦

𝑖
)) in Fig. S1 (c). Compared with the distribution of

local minima of random trials, case (c) is highly non-convex. Both
(a) and (b) only need a single trial to achieve global minimum for the
Torus model. However, it is hard to find the global minimum for (c)
since the curvature guidance disappears according to Proposition
5.2.

(a) (b) (c)
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Fig. S1. Evaluation on the setting of stretching ratios 𝝀𝐼𝑛
𝑖 . Top: (a, b, c) are

optimal solutions with different specified stretching ratios. Bottom: the
distributions of 4, 000 local minima of random trials for each case. (a,b) only
need one trial to get the global minimum; however, (c) takes lots of trials to
find the global minimum.
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