
Computer Aided Geometric Design 71 (2019) 43–62
Contents lists available at ScienceDirect

Computer Aided Geometric Design

www.elsevier.com/locate/cagd

Surface reconstruction by parallel and unified particle-based

resampling from point clouds

Sikai Zhong, Zichun Zhong ∗, Jing Hua

Department of Computer Science, Wayne State University, Detroit, MI 48202, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 5 April 2019

Keywords:
Particle
Resampling
Meshing
Parallel
Point clouds

This paper introduces a new unified particle-based formulation for resamplings with
specific patterns from original point clouds. Given the input point clouds, the proposed
Lp-Gaussian kernel function is defined to simulate the inter-particle energy and force
to form the isotropic/adaptive/anisotropic hexagonal and quadrilateral sampling patterns.
Then, the particle-based optimization can be easily formulated and computed in parallel
scheme with the high-efficiency and the fast convergence, without any control of particle
population. Finally, based on the optimized particle distribution, the high-quality surface
meshes are reconstructed by computing the restricted Voronoi diagram and its dual mesh
with the parallel implementation. The experimental results are demonstrated by using
extensive examples and evaluation criteria as well as compared with the state-of-the-art
in the point cloud resampling and reconstruction.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of various types of 3D scanners and imaging devices, point clouds and meshes are most
common representations of 3D shapes. They are widely used in a variety of applications, such as designing 3D models
for manufacturing, creating 3D shapes for animations, representing 3D objects for autonomous driving, etc. How to effi-
ciently and effectively build such models is a challenging research problem. Traditionally, large-size and high-resolution raw
point clouds or meshes are required to represent complicated 3D objects with a lot of features and details. It is difficult to
build a real-time system to process the high-resolution 3D models in real 3D scenarios, such as registration, segmentation,
classification, simulation, compression, transmission, etc. Hence it requires an unsufferable computational time and unaf-
fordable storage, e.g., a 3D point cloud of 30M samples has 1GB data size. Therefore, it is important to resample the original
dense point clouds into the relative sparse point sets with high-quality and high-fidelity, and then compute the meshes to
reconstruct the 3D surfaces.

Point cloud resampling and surface remeshing are possible solutions to address the aforementioned problem. There are
extensive methods for uniform and adaptive resampling from point clouds Lipman et al. (2007), Huang et al. (2009), Liao
et al. (2013), Huang et al. (2013), Preiner et al. (2014), Luo et al. (2018), Chen et al. (2018), and isotropic and anisotropic
remeshing from surface meshes Shimada and Gossard (1995), Shimada et al. (1997), Du et al. (1999, 2003), Yan et al. (2009),
Du and Wang (2005), Valette et al. (2008), Lévy and Liu (2010), Zhong et al. (2013).

* Corresponding author.
E-mail addresses: sikai.zhong@wayne.edu (S. Zhong), zichunzhong@wayne.edu (Z. Zhong), jinghua@wayne.edu (J. Hua).
https://doi.org/10.1016/j.cagd.2019.04.011
0167-8396/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cagd.2019.04.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cagd
mailto:sikai.zhong@wayne.edu
mailto:zichunzhong@wayne.edu
mailto:jinghua@wayne.edu
https://doi.org/10.1016/j.cagd.2019.04.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cagd.2019.04.011&domain=pdf

44 S. Zhong et al. / Computer Aided Geometric Design 71 (2019) 43–62
Among them, centroidal Voronoi tessellation (CVT) is a popular technique that has been successfully applied to
isotropic/anisotropic resampling and remeshing. However, the CVT-based methods need to compute Voronoi diagram it-
eratively during the energy optimization Du et al. (1999, 2003), Yan et al. (2009), especially in adaptive and anisotropic
cases Du and Wang (2005), Valette et al. (2008), Lévy and Liu (2010), Chen et al. (2018), which are complicated and time-
consuming. On the other hand, in order to improve the efficiency and simplicity, particle-based methods are developed
to formulate the inter-particle energy or force, and then generate the different sampling distributions Witkin and Heckbert
(1994), Bossen and Heckbert (1996), Shimada and Gossard (1995), Shimada et al. (1997), Zhong et al. (2013), Ni et al. (2018).
The particle insertion and deletion strategies are needed in most previous methods, which may not be efficient. Besides that,
to our knowledge, all the previous particle-based methods are not designed and implemented in parallel schemes; and also
not developed for point cloud applications.

In this paper, we propose a new unified particle-based method for high-quality resamplings from the input point clouds.
The proposed particle-based optimization framework can be easily computed in a parallel scheme with the high efficiency.
Finally, based on the optimized particle distribution, the surface meshes are reconstructed by computing the restricted
Voronoi diagram (RVD) with a parallel implementation. The experimental results are demonstrated by using extensive exam-
ples and evaluation criteria as well as compared with the state-of-the-art in the point cloud resampling and reconstruction.
The key contributions of our work are as follows:

• It proposes a unified Lp -Gaussian kernel function (p = 2 or p = ∞), by leveraging the classical L2-Gaussian kernel,
to simulate the inter-particle energy and force to optimize a set of particles to form the high-quality uniform/adap-
tive/anisotropic hexagonal and quadrilateral patterns from the input point clouds (with adaptive/anisotropic metrics).

• The L∞-Gaussian kernel with squared Lp norm (such as p ≥ 4) is a new and effective kernel formulation in the particle-
based method for quadrilateral sampling and meshing.

• To our knowledge, this is the first time that a parallel particle-based computational algorithm is proposed for resampling
of point clouds. Our empirical evaluations in several scenarios demonstrate that the proposed method is a practical
utility with the fast speed.

2. Related work

In this section, we only review some most related work on point sampling methods, CVT-based methods, and particle-
based methods for 3D shape surfaces/point clouds.

2.1. Point sampling methods

In computer graphics, sampling distribution on a shape has become an interesting research topic in the past few decades.
There are some methods proposed to generate uniform distributions with blue noise properties on a surface mesh, such
as Öztireli et al. (2010), Chen et al. (2012, 2013), Yan et al. (2015), which have been used in many applications such as
stippling, rendering, as well as surface remeshing. Lipman et al. (2007) introduced the Locally Optimal Projection (LOP)
operator for surface approximation from point-set data. Then, Huang et al. (2009) proposed an improved weighted-LOP
(WLOP) operator, which is combined with a novel normal estimation and propagation algorithm, and this method can pro-
duce a set of clean and uniformly distributed points endowed with reliable normals. Liao et al. (2013) further considered
both spatial and geometric feature information of the point clouds and proposed a feature-preserving LOP operator. Huang
et al. (2013) proposed an edge-aware point set resampling method. Preiner et al. (2014) presented a continuous formulation
of the WLOP operator and achieved a significant speed acceleration. Recently, Luo et al. (2018) presented a point cloud
resampling method based on the Gaussian-weighted graph Laplacian to make the point distribution conformal to a target
density distribution. All the aforementioned work does generally focus on uniform/adaptive point sampling without con-
sidering anisotropic and specific sampling patterns (e.g., hexagonal or quadrilateral). In this work, we propose an efficient
method that constructs high-quality isotropic/anisotropic hexagonal/quadrilateral resampling results from point clouds.

2.2. CVT-based methods

A centroidal Voronoi tessellation (CVT) is a special Voronoi diagram, where each generating sample coincides with the
centroid of its Voronoi cell Du et al. (1999). The Lloyd relaxation Lloyd (1982) and a quasi-Newton energy optimization
solver Liu et al. (2009) are widely used to compute CVT and generate a regular sampling. In order to make the computation
practical on 3D shape surfaces, the restricted Voronoi diagram (RVD) or restricted Delaunay triangulation (RDT) Edelsbrunner
and Shah (1994) are used in meshing algorithms Dey and Ray (2010). Then, Du et al. (2003) defined a restricted CVT
theoretically and then Yan et al. (2009) developed an efficient algorithm to compute the RVD for isotropic surface remeshing.

Du and Wang (2005) further extended the concept of CVT to the anisotropic case, that is anisotropic CVT (ACVT). An
anisotropic Voronoi diagram (AVD) with the given Riemannian metric needs to be constructed in each Lloyd iteration,
which is time-consuming. To improve the computational speed, Valette et al. (2008) proposed a discrete approximation
of ACVT by clustering the vertices of a dense triangulation of the domain, by sacrificing the mesh quality. Lévy and Bon-
neel (2012) extended the computation of CVT to a 6D space (using vertex positions and normals) in order to achieve the

S. Zhong et al. / Computer Aided Geometric Design 71 (2019) 43–62 45
curvature-adaptation for anisotropic meshing, but did not provide user’s flexibility to control the anisotropy. Zhong et al.
(2014) provided a method to solve the anisotropic meshing by conformally mapping the metric surface to an appropriate
2D parametric domain and then compute CVT on it, but it cannot handle surfaces with complicated topologies. Lévy and
Liu (2010) introduced an Lp -CVT, which is to minimize a higher-order norm of the coordinates on the Voronoi cells with
the input surface meshes, and generate triangular and quad-dominant surface meshes. Recently, Chen et al. (2018) extended
the Lp-CVT method for resampling isotropic or anisotropic distributions from a given point cloud.

In order to further improve the computations on CVT or Voronoi diagram, Vasconcelos et al. (2008) proposed to utilize
GPU to compute CVT in a 2D plane, by using a pre-defined mask to estimate the Voronoi cell for each site. Rong et al.
(2011) presented a GPU-assisted method to compute the constrained CVT on a surface, based on its 2D geometry image.
The surface is discretized as pixels on a rectangular domain, and then the discrete Voronoi diagram is computed by using
the jump flooding algorithm Rong and Tan (2006). Fei et al. (2014) solved the CVT problem by improving the non-linear
optimization on GPU with a parallel L-BFGS-B algorithm. Recently, Boltcheva and Lévy (2017) presented a parallel method
for reconstructing a 3D surface triangulation from an input point set by computing the RVD and implemented the algorithm
by using a multi-core CPU. Ray et al. (2018) proposed a GPU-based algorithm to compute a 3D Voronoi diagram. Compared
to all the above CVT-based approaches, our particle-based scheme avoids the construction of Voronoi diagram/AVD in the
intermediate iterations of energy optimization. Thus, it can achieve faster performance in the computational complexity as
demonstrated in Sec. 6.

2.3. Particle-based methods

Witkin and Heckbert (1994) constructed particles with pair-wise Gaussian energy to sample and control implicit sur-
faces. Meyer et al. (2005) formulated the energy kernel as a modified cotangent function with finite support. Bronson et al.
(2012) worked on the particle-based isotropic and adaptive meshing of CAD models by using the parametric space of each
surface patch. Zhong and Hua (2016) introduced a kernel-based adaptive sampling approach for 2D/3D image reconstruction
and triangular meshing, but it does not handle with sampling for mesh or point cloud surfaces. As for anisotropic meshing,
Bossen and Heckbert (1996) incorporated the metric into a distance function to model the repulsion and attraction forces
between particles. Shimada and Gossard (1995), Shimada et al. (1997), Yamakawa and Shimada (2000) proposed physics-
based relaxation of “bubbles” with a bounded cubic function of the distance to model the inter-bubble forces, and extended
it to anisotropic meshing by converting spherical bubbles to ellipsoidal ones. Both Bossen et al. and Shimada et al.’s work
requires to adaptively insert or delete particles/bubbles in certain regions. Thus, it takes a longer convergence time. Adap-
tive Smoothed Particle Hydrodynamics (ASPH) Shapiro et al. (1996) uses inter-particle Gaussian kernels with an anisotropic
smoothing tensor, but it directly formulates the energy in the original space without using the embedding space concept.
This procedure leads to an inaccurate anisotropy in the computed mesh as demonstrated in Zhong et al. (2013).

In order to address the above limitations, Zhong et al. (2013) showed that by formulating an accurate inter-particle
energy optimization for anisotropic meshing in a high-d embedding space, such optimizations have the fast convergence
without any need for the explicit control of particle population. Ni et al. (2018) proposed a particle-based method to
optimize a set of particles to form the desired lattice pattern for tetrahedral meshing. In their method, the particle insertion
and deletion strategies are required, which may not be as efficient as our proposed method. Besides that, all the previous
particle-based methods are not designed and implemented in the parallel scheme.

3. A novel L p particle formulation

In the particle-based framework, considering each sample as a particle, the potential energy between particles deter-
mines inter-particle forces. When forces applied on each particle become equilibrium, particles reach the optimal balanced
state with the specified distribution under the given metric (e.g., isotropic or anisotropic). In the following subsection, we
introduce and extend L2 optimal approximation idea into a unified Lp in the designed inter-particle energy, which can
guide particles to form the hexagonal and quadrilateral patterns in a 3D surficial (2-manifold) space when they reach the
equilibrium.

Merits: (1) The progress of the physically-based system leads to force equilibrium of particles in the nature, such as
honeycomb/grid, glass/steel panel structures, etc. Particle system is a natural design in the mesh generation Shimada and
Gossard (1995), Shimada et al. (1997), Zhong et al. (2013), Ni et al. (2018) as well as the shape sampling Witkin and
Heckbert (1994), Meyer et al. (2005), since it is essentially structurally-aware and physically-aware. (2) The computational
complexity is relatively low (i.e., considering particle interactions with a small neighborhood) and the implementation is
very simple, which is superbly efficient among sampling algorithms. The details will be given in Sec. 3.4 and Sec. 6. For ex-
ample, compared with 2D CVT, it is complicated to compute restricted Voronoi cells on the shape surface, and optimize the
sampling positions by using CVT method. (3) The particle-based system is easily formulated in the (isotropic or anisotropic)
metric space as discussed in the following of this section, and the inter-particle energy can be independently calculated for
parallelism. The details will be given in Sec. 4.3 and Algorithm 1.

Definition: The aim of Lp-Gaussian kernel is to propose a new energy function well suited to variational hexagonal
and quadrilateral resampling. Given n particles with their positions X = {xi |i = 1, . . . , n} on the point clouds of the shape

46 S. Zhong et al. / Computer Aided Geometric Design 71 (2019) 43–62
Fig. 1. The visualization of the proposed Gaussian kernels with different norms. The top row is visualized from the 2D x-y view and the bottom row is
visualized from the 3D view. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

surface � embedded in Rm (m is the dimension of 2-manifold in this work), the inter-particle energy can be defined by an
Lp-Gaussian kernel:

Eij
L p

= e
− ‖xi−x j‖2

p
2σ2 , (1)

where σ = cσ
√|�|/n is a kernel width. |�| denotes the area of underlying shape surface (represented by point clouds

in this work) and cσ is a constant. p is used to define different norms in finite-dimensional vector spaces. More detailed
discussion about the kernel width and cσ will be given in Sec. 4.2. In this work, we investigate several potential variants of
Lp-Gaussian kernel for generating different sampling patterns in the following subsections.

3.1. Hexagonal sampling: L2-Gaussian kernel

L2-Gaussian kernel, i.e., p = 2 in Eq. (1), is a nonnegative radially-symmetric exponential function (Fig. 1 a). Essentially,
in 2D kernel, domain is a circle, which leads to simulate the interactions between particles and form the ideal 2D hexagonal
patterns of the sampling. L2-Gaussian kernel is C∞ continuous, ensuring to obtain a good optimum. For instance, the
previous CVT-based energies for meshing are at most C2 continuity Liu et al. (2009). The previous particle-based work, such
as Zhong et al. (2013), Ni et al. (2018), Zhong et al. (2018), only designs and uses L2-Gaussian kernel for mesh generation.
In our work, we are working on the L2-Gaussian kernel for resampling on point clouds.

Then, the gradient of Eij
L2

w.r.t. x j is the force Fi j
L2

applied on particle j by the other particle i:

Fi j
L2

= ∂ Eij
L2

∂x j
= (xi − x j)

σ 2
e
− ‖xi−x j‖2

2
2σ2 . (2)

3.2. Quadrilateral sampling: L∞-Gaussian kernel

L∞-Gaussian kernel, i.e., p = ∞ in Eq. (1), is a nonnegative grid-symmetric exponential function. Essentially, in 2D kernel,
domain is a square, which leads to simulate the interactions between particles and form the ideal 2D quad patterns of the
sampling. However, the L∞ norm is not differentiable. The Lp norm is a good approximation, and easier to manipulate alge-
braically (Fig. 1 b). || · || represents the Lp norm. In other words, ||x||p = p

√|x|p + |y|p + |z|p and ||x||2p = p
2
√|x|p + |y|p + |z|p .

In this work, we use L4 in a Gaussian kernel for quadrilateral sampling.
Then, the gradient of Eij

Lp
w.r.t. x j is the force Fi j

Lp
applied on particle j by the other particle i:

Fi j
L p

=
∂ Eij

L p

∂x j
= (xi − x j)

p−1‖xi − x j‖2
p

σ 2‖xi − x j‖p
p

e
− ‖xi−x j‖2

p
2σ2 . (3)

Importance of squared Lp norm in Gaussian kernel: The visualization of the proposed Gaussian kernels with different
norms is illustrated in Fig. 1. Fig. 1 (a) shows the classical L2-Gaussian kernel with circular iso-contours. Fig. 1 (b) and (c)

S. Zhong et al. / Computer Aided Geometric Design 71 (2019) 43–62 47
show two variants of Lp -Gaussian kernel with square/quad iso-contours (e.g., L4 norm as an example). Their key difference
is: (b) uses the squared Lp norm and (c) uses the pth power of Lp norm (this is intuitive from Lp-CVT Lévy and Liu (2010)).
Through Fig. 1, it is easy to see that the domain area and variance ratio of iso-contours in (b) are quite similar to those in
(a), except the shape of the iso-contours, i.e., (a) is circular and (b) is square/quad. That is what we exactly desire. When
we apply the pth power of Lp norm in a Gaussian kernel, the iso-contours are still square. However, the larger iso-contour
values of the kernel are dominantly occupied in the domain and they are changing dramatically and steeply around domain
boundary, which leads to the instability of the inter-particle energy and force/gradient.

3.3. Anisotropic and adaptive sampling

In order to simulate the adaptive or anisotropic sampling patterns, we can integrate the density or anisotropic metric in
the proposed Lp-Gaussian kernel function. In anisotropic case, at a given point x ∈ �, the dot product between two vectors
a and b is denoted by 〈a, b〉M(x) , which is defined over the tangent space of the surface (the point cloud). The metric can be
represented by an m ×m symmetric, positive, and definite (SPD) matrix M(x). Its square root Q(x) = √

M(x) is also a unique
SPD matrix Horn and Johnson (1990), which is defined on vectors a and b. The anisotropic L p -Gaussian kernel function is:

Eij
aniso = e

− ‖Qi j (xi−x j)‖2
p

2σ2 , (4)

where Qi j is the anisotropic metric at the middle position of the particles i and j and it is defined on the vector xi − x j .

Then the gradient of Eij
aniso is the force Fi j

aniso applied on particle j by the other particle i in the anisotropic embedding
space (derived from Eq. (3) with integrating metric Qi j):

Fi j
aniso = [Qi j(xi − x j)]p−1‖Qi j(xi − x j)‖2

p

σ 2‖Qi j(xi − x j)‖p
p

e
− ‖Qi j (xi−x j)‖2

p
2σ2 . (5)

It is noted that when M(x) = ρ(x)I, where I is an identity matrix, it defines an adaptive metric with the density function
ρ(x). Then, Eq. (4) becomes the adaptive Lp-Gaussian kernel function.

3.4. Particle objective function

Once the inter-particle Lp-Gaussian energy is defined, the particle optimization is formulated as an energy minimization
problem, i.e., to sum up all inter-particle energies. The total objective function is:

E(X) =
∑

i

∑
j
=i

E i j ≈
∑

i

∑
j∈N(i)

Eij, (6)

where X = {xi |i = 1, . . . , n}, which are constrained in the domain of the point cloud surface �, N(i) is the set of neighbors of
particle i within five standard deviations of the Gaussian energy kernel (5σ). The key reason is that we only need to consider
the inter-particle energies within a certain neighborhood, instead of every pair of particles, since the Gaussian energy is
close to 0 when the neighborhood distance is larger than 5σ . With the help of k-d tree data structure for computing
K-Nearest Neighbors (K-NN), the computational complexity of particle optimization is O (n log n), instead of O (n2). This
computational complexity also includes the k-d tree construction. In our implementation, Approximate Nearest Neighbor
(ANN) library Mount and Arya (1998) is applied to efficiently search local neighborhoods. It is noted that, in practice, the
number of output particles (samples) in this work is less than 1M, so that log n ≤ 20 (e.g., even if n ≈ 1B, log n = 30). In
conclusion, the practical computational performance of the proposed particle system is quite efficient.

4. Algorithm design on point clouds

In the following subsections, the details of the key components in the proposed algorithm on point clouds are discussed,
i.e., tangent plane disk, kernel width, particle optimization, and surface reconstruction.

4.1. Tangent plane disk

Point clouds do not have explicit surface information, so we need to define the local tangent planes to constrain the
particles during the optimization. The idea we use is to compute the local tangent plane disks derived from the original
point clouds to approximate the underlying surfaces. The first step is to build a k-d tree for all the input point clouds. Then,
the normal of each point is computed by using the least-square plane fitting estimation Rusu (2009) based on K-NN. The
number of neighbors is 30 in our experiments. The normals do not need to be oriented, since we only use normals to
define the tangent planes. After that, we need to compute suitable radiuses to define local tangent plane disks. The radius
for every disk has to be adaptive because the original point clouds are not uniformly distributed, though they are relatively
dense. There is a trade-off for overlaps and gaps between disks. When larger radius is used, more overlaps will exist. On

48 S. Zhong et al. / Computer Aided Geometric Design 71 (2019) 43–62
the other hand, when smaller radius is used, more gaps will appear. In our experiments, we use the radius defined based
on the average distance between the point and its neighbors (such as six nearest neighbors) to determine the size of the
local tangent plane disk.

4.2. Kernel width

The Gaussian kernel energies as defined in Eq. (1) and Eq. (4) depend on the choice of the fixed kernel width σ , which
determines the final sampling. Once users specify the total number of particles, the proposed particle-based computation
can be automatically optimized without any control of particle population for different models (e.g., inserting or deleting
particles during the optimization).

The slope of the proposed energy peaks at distance of σ and it is near zero at much smaller or much greater distances.
When σ is chosen too small, kernels will nearly stop spreading because there is almost no overlapping/interaction between
Gaussian kernels, which may lead to aliasing and artifacts in the computed sampling. When σ is chosen too large, nearby
kernels cannot repel each other and the resulting sampling pattern will be poor. In this work, σ is set to be proportional to

the average “radius” of each kernel when they are uniformly distributed on the underlying surface �: σ = cσ

√
|�|/n, when

|�| represents the area of the surface � in the embedding space (i.e., isotropic, adaptive, and anisotropic space), n is the
number of particles, and cσ is a constant coefficient. From our extensive experiments, we find out that the best value of cσ

is around 0.3.
It is noted that when the isotropic sampling is computed, � = � and it can be computed based on the area summation

of all the local tangent plane disks as discussed in Sec. 4.1 (with multiplying a constant α = 1.3). As for anisotropic and
adaptive samplings, given any input anisotropic/adaptive metric field M(x) (Q(x) = √

M(x)), the area of the embedded space
is: |�| = ∫

�
det Q(x)ds. In this work, the input surfaces are represented by the dense point clouds, with metric defined on

each point. We need to approximate the surface area through point clouds. For each point pi , we use its nearest neighbors,
e.g., six neighbors pi1 , . . . , pi6 , to approximate a local disk area under the metric. The average distance between pi and its
neighbors in the embedded space is:

dpi = 1

6

6∑
j=1

||Q(pi) + Q(pi j)

2
· (pi − pi j)||. (7)

Then, we use the above distance as the local disk radius to approximate the underlying local surface area covering by pi as:

S pi ≈ απ(
dpi
2)2, where α is a constant (α = 1.3) in our experiments. After summing all the disk areas of the point clouds,

we can approximate the total area of the surface |�| represented by the point clouds in the embedded space.

4.3. Particle optimization

During the particle optimization, with the summation of inter-particle energy defined in Eq. (6) and force defined in
Eq. (2), or Eq. (3), or Eq. (5), we use the L-BFGS algorithm Liu and Nocedal (1989) to optimize the particle positions. It is
a quasi-Newton method, which can quickly minimize the energy function of our particle-based sampling with less storage
requirement. The total energy and the gradient are updated at each iteration during the optimization. As we discussed
before, the gradient of particle xi can be considered as the force Fi applied to itself. Furthermore, particles are supposed to
move on the tangent space T� of the surface. So the gradient used by the L-BFGS optimizer needs to be projected onto T�:

Fi|T�
= Fi − [Fi · n(xi)]n(xi), (8)

where n(xi) is the unit normal of particle xi on the point cloud surface.
In the L-BFGS optimization, the particles are constrained on the input point cloud surface �. In each iteration, the up-

dated particle positions need to be projected to their nearest locations on the tangent plane disks, if they are out of the
boundary or out of the surface. It is noted that the particle optimization formulation is constructed by using a pushing
energy and force based on an Lp -Gaussian kernel, which can maximally and optimally push particles away within the
boundary constraint so as to cover the entire domain (point cloud surface), leading to automatically capture and reconstruct
the boundaries without requiring the user’s tagging as an extra input (such as CVT-based approaches need user’s interven-
tion). This optimization process is iterated until convergence by satisfying a specified stopping condition, e.g., the magnitude
of the gradient is smaller than a threshold or the maximal number of iterations. In our experiments of this work, we use
the number of iterations as the stopping condition and the detailed settings are given in Sec. 6.

Since no inter-thread communication/synchronization is required for each particle i (w.r.t. its inter-particle energy and
force), parallelization of the algorithm is easy and it can directly gain a factor nearly linear in the number of CPU cores. The
L-BFGS algorithm can be implemented in parallel of CPU cores by using HLBFGS package Liu (2010).

S. Zhong et al. / Computer Aided Geometric Design 71 (2019) 43–62 49
Data: Point cloud surface � with metric M, the norm Lp , and the desired number of resampling points n
Result: The isotropic/anisotropic resampling X and surface mesh of �
Initialize particle locations X;
while stopping condition not satisfied do

Build k-d tree for the current sampling X;
for each particle i in parallel do

Get particle i’s neighbor N(i) from k-d tree;
for each particle j ∈ N(i) in parallel do

Compute Eij using Eq. (1) or Eq. (4);

Compute Fi j using Eq. (2) or Eq. (3) or Eq. (5);
end
Sum the total force Fi ;

Project Fi to the tangent space using Eq. (8);
end
Sum the total energy E in Eq. (6);

Run parallel L-BFGS using HLBFGS with E and Fi , to get updated locations X;
Project X onto the tangent plane disks or the boundary of the point clouds in parallel;

end
Compute the surface mesh in parallel using Geogram from the computed X;

Algorithm 1: Parallel Particle Optimization and Surface Reconstruction.

4.4. Surface reconstruction

4.4.1. Triangular meshing
After the L2 particle optimization, the final output triangular mesh is generated as the dual of restricted Voronoi dia-

gram (RVD) Yan et al. (2009). The parallel computation of RVD on point clouds is developed by using the method Boltcheva
and Lévy (2017). The idea is to compute the intersection between the 3D Voronoi diagram of the computed particles and
a set of disks centered at such particles. Once the RVD is obtained, we can easily compute its dual graph, i.e., restricted
Delaunay triangulation (RDT). The algorithm robustly computes the RVD using filtered geometric predicates and symbolic
perturbation to resolve degeneracies Lévy (2016). Generally, there is no guarantee that the dual mesh will not have inverted
elements. Whenever such an inverted element is detected, our implementation inserts additional points using the provably
terminating algorithm in Rouxel-Labbé et al. (2016), which is also used in Lévy and Bonneel (2012). In our implementation,
Geogram library ALICE/INRIA Nancy (2018) is used to generate isotropic and adaptive meshes (both in sequential and paral-
lel). When reconstructing anisotropic meshes, the dual of anisotropic Voronoi diagram (AVD) Du and Wang (2005) restricted
on point clouds is generated. We implement it by modifying the Geogram library in anisotropic case (both in sequential and
parallel).

4.4.2. Quad-dominant meshing
After the Lp particle optimization, the quad-dominant mesh is extracted from the RDT (computed in the previous sub-

section) by merging pairs of triangles. Firstly, for every triangle i , all its neighbors i j are found. The neighbors and itself
can construct the potential quads. All of those pairs are sorted by the angles at the corners of the so-obtained quads. Then,
the triangles are merged in the priority order, as suggested by Lévy and Liu (2010). Finally, we can apply the all-quad mesh
conversion technique Itoh and Shimada (2002) to clean all non-quad elements if necessary (which is beyond the scope of
this paper).

In conclusion, our parallel particle-based resampling and reconstruction can be summarized in Algorithm 1.

5. Evaluations

5.1. Triangular mesh quality

To measure the isotropic triangular mesh quality, we use the criteria as follows Frey and Borouchaki (1999). The quality
of a triangle is measured by G = 2

√
3 S

ph , where S is the triangle area, p is its half-perimeter, and h is the length of its
longest edge. Gmin , Gavg are the minimal and average qualities of all triangles. θmin , θavg are the smallest and average
angles of the minimal angles of all triangles. %<30 is the percentage of triangles with their minimal angles smaller than
30 degrees. The angle histogram is also provided. It is noted that θavg should be 60 degrees if it is a regular triangle. G is
between 0 and 1, where 0 denotes a skinny triangle and 1 denotes a regular triangle.

In the anisotropic triangular meshing, for each triangle abc in the final mesh, we use its approximated metric Q(abc) =
(Q(xa) + Q(xb) + Q(xc))/3 to affine-transform it from the original anisotropic space into the Euclidean space. After that, we
employ the previous isotropic triangular criteria, used in Zhong et al. (2013) and Fu et al. (2014)’s recent work, to evaluate
the quality of generated anisotropic triangular mesh.

50 S. Zhong et al. / Computer Aided Geometric Design 71 (2019) 43–62
Fig. 2. Comparisons on uniform hexagonal resamplings and isotropic triangular meshes with CVT-based method Chen et al. (2018) and our particle-based
method on Cute Spocktopus, Hand Skeleton, Sapphos Head, and Stonehaus1 point cloud models.

5.2. Quad-dominant mesh quality

To measure the quad-dominant mesh quality, we use the criteria as follows: %� is the percentage of the quads in all
mesh elements. θmin , θavg are the smallest and average angles of the minimal angles of all elements. %<30 is the percentage
of elements with their minimal angles smaller than 30 degrees. The angle histogram is given as well. It is noted that θavg
should be 90 degrees if it is a regular quad.

6. Results

We develop our algorithms by using Microsoft Visual C++ 2015 in sequential implementation, and OpenMP 2.0 in the
parallel implementation. The mesh quality evaluations are implemented with Matlab R2015a. For the hardware platform,
the experiments are run on a desktop computer with Intel(R) Core(TM) i7-6850K Processor with 12 threads (6 cores), 15MB
Cache, 4.0 GHz, 32GB DDR4 RAM. Users provide the desired numbers of output samples for all the experiments.

6.1. Isotropic hexagonal resampling and mesh reconstruction

Comparison with CVT-based method: In this subsection, we first evaluate and compare our method with a recent state-
of-the-art resampling approach on point clouds, i.e., a CVT-based method Chen et al. (2018), which is most close to our
work. Fig. 2 shows the visualization comparison with the CVT-based method and our method (in L2-Gaussian kernel), on

S. Zhong et al. / Computer Aided Geometric Design 71 (2019) 43–62 51
Table 1
Comparisons with CVT-based method Chen et al. (2018) and our particle-based method on statistics and timings for resampling and surface reconstruction.

Model Method #Points #Samples Gmin Gavg θmin θavg %<30◦ T R (Seq.) T M (Seq.) T R (Para.) T M (Para.)

Cute Spocktopus CVT 182,351 30,000 0.38 0.88 17.24◦ 51.11◦ 0.01% 37.72 s 0.48 s − −
Cute Spocktopus Particle 182,351 30,000 0.49 0.89 25.47◦ 52.16◦ 0.008% 14.97 s 0.48 s 3.07 s 0.31 s

Hand Skeleton CVT 269,889 50,000 0.05 0.87 2.02◦ 50.16◦ 0.2% 54.79 s 0.70 s − −
Hand Skeleton Particle 269,889 50,000 0.14 0.89 4.92◦ 51.91◦ 0.1% 24.13 s 0.70 s 4.24 s 0.50 s

Sapphos Head CVT 271,937 50,000 0.44 0.88 19.74◦ 50.93◦ 0.022% 65.87 s 0.74 s − −
Sapphos Head Particle 271,937 50,000 0.50 0.89 23.43◦ 52.34◦ 0.007% 26.73 s 0.74 s 5.53 s 0.48 s

Stonehaus1 CVT 639,842 80,000 0.51 0.88 21.42◦ 51.07◦ 0.003% 133.36 s 1.09 s − −
Stonehaus1 Particle 639,842 80,000 0.42 0.90 27.22◦ 52.55◦ 0.003% 56.33 s 1.09 s 10.43 s 0.67 s

Note: #Points: the number of points in the input point clouds. #Samples: the number of output samples. T R (Seq.) and T R (Para.): timings for resampling computations in
sequential and parallel designs with 35 iterations. T M (Seq.) and T M (Para.): timings for meshing computations in sequential and parallel designs. The best values are highlighted
in bold for each group. It is noted that the timings T M (Seq.) for meshing computations on CVT and Particle methods are the same, since both of them use Geogram to compute
the final mesh.

several point clouds (e.g., Cute Spocktopus, Hand Skeleton, Sapphos Head, and Stonehaus1 models). The final mesh an-
gle histograms show that our method has more regular triangles (i.e., more number of angles close to 60◦/more regular
hexagonal sampling patterns). In essence, the particle method is a physically-based system, which can lead to the force
equilibrium of particles in the nature, so as to generate the nice sampling and meshing results. Table 1 shows the statistics
and timings for resampling computation and surface reconstruction with CVT-based method Chen et al. (2018) and our
particle-based method. In quantitative, we can clearly see that our particle-based method has better sampling and mesh
quality (especially Gavg , θavg). Meanwhile, our method also has the faster convergence speed, since the CVT-based method
needs to compute Voronoi diagram iteratively during the energy optimization and particle-based method only needs to
compute the inter-particle energy and force in each iteration, which is much more efficient. Theoretically, the computa-
tional complexity of CVT-based method by using Lloyd’s algorithm is O (m log n) for each iteration, where m is the number
of points in the original point clouds Secord (2002), Chen et al. (2018); while our particle-based method is O (n log n) for
each iteration, where n is the number of output samples. Note that, m is always much greater than n in our point cloud
applications. We have developed and implemented our particle-based resampling and meshing computations both in se-
quential and parallel ways. Our method is several times faster than CVT-based method in the sequential design, not to
mention that in the parallel design, our method is even faster. In the implementation of CVT-based method, each RVD is ob-
tained by using the clipping method Lévy and Bonneel (2012), Chen et al. (2018) from Geogram library ALICE/INRIA Nancy
(2018).

Due to the page limit, there are some more uniform hexagonal resampling and isotropic triangular meshing results and
comparisons on different 3D point clouds given in Appendix.

Large-size point clouds: In order to demonstrate the scalability of the proposed method on large-size resampling and
meshing of point clouds, Fig. 3 shows the final results with resamplings ranging from 150K to 200K of the original point
clouds with more than 1M points. It is noted that our particle-based method is quite efficient on the large-size models, and
it takes 47.96 s (100 iterations and meshing) and 47.84 s (60 iterations and meshing) for Arch and Lucy models (in parallel
implementation), respectively. The final resampling and mesh quality are quite good as well.

6.2. Anisotropic and adaptive resampling and mesh reconstruction

Anisotropic metric on point clouds: For the anisotropic resampling and meshing on 3D point clouds, we use the fol-
lowing 3 × 3 metric tensor: M = [vmin, vmax, n]diag(1, (s2

s1
)2, 0)[vmin, vmax, n]T , where vmin and vmax are the directions of the

principal curvatures, n is the unit point normal. s1 and s2 are two user-specified stretching factors along principal curvature
directions. Since the resampling and meshing are computed by curvature-based metric tensor fields, we use the above met-
ric with s1 = √

Kmin and s2 = √
Kmax , where Kmin and Kmax are the principal curvatures. We set small thresholds to preserve

both Kmin and Kmax not vanishing. The principal curvatures and normals of original dense point clouds are estimated by
PCL library Rusu and Cousins (2011). Then, Laplacian smoothing is applied to both the stretching factors and directions, to
ensure smoothness of the input metric field on the point cloud surface. s2

s1
is defined as stretching ratio (≥ 1) in the metric

field M of the point clouds. The adaptive metrics are computed based on the mean curvatures of the original dense point
clouds as the density function.

Anisotropic results: Fig. 4 shows the visualization results of our method (in anisotropic L2-Gaussian kernel) on
anisotropic resampling and mesh reconstruction on several point cloud models with curvature-based anisotropic metrics,
such as Duck, Kitten, Fertility, Gargo, Genus3, and Rocker Arm. By using our method, samples are denser along the maximal
principal curvature directions and stretched along the minimal principal curvature directions. While in the low stretching
regions (i.e., isotropic metric regions), the regular sampling distributions are obtained. The final mesh angle histograms
show that our method has good mesh quality to match the input curvature-based anisotropy. Table 2 shows the statistics
and timings for anisotropic resampling computation and surface reconstruction by using our particle-based method. We can

52 S. Zhong et al. / Computer Aided Geometric Design 71 (2019) 43–62
Fig. 3. More uniform hexagonal resampling and isotropic triangular meshing results on large-size Arch and Lucy point cloud models (more closeups of Lucy
result are given in Appendix).

Fig. 4. Anisotropic resampling and anisotropic triangular meshing results on several point cloud models with curvature-based anisotropies.

S. Zhong et al. / Computer Aided Geometric Design 71 (2019) 43–62 53
Table 2
Statistics and timings for anisotropic resampling and surface reconstruction by our
particle-based method.

Model #Points #Samples Stretch T R (Para.) T M (Para.)

Duck 95,990 8000 [1,7.4] 7.48 s 0.23 s
Kitten 96,000 10,000 [1,7.2] 8.76 s 0.23 s
Fertility 268,357 10,000 [1,8.3] 12.52 s 0.25 s
Gargo 240,144 15,000 [1,6.5] 12.61 s 0.30 s
Genus3 141,994 10,000 [1,6.2] 8.21 s 0.23 s
Rocker Arm 172,032 13,000 [1,6.9] 9.62 s 0.29 s

Note: #Points: the number of points in the input point clouds. #Samples: the num-
ber of output samples. T R (Para.): timings for resampling computation in parallel
design with 50 iterations. T M (Para.): timings for meshing computation in parallel
design.

Fig. 5. Comparisons on computational time (50 iterations) with CVT-based method Chen et al. (2018) and our particle-based method on Kitten point cloud
models (with different resolutions) for adaptive resampling and adaptive triangular meshing results with 7000 samples.

see that our method is quite efficient on anisotropic resampling and meshing. There are some more anisotropic resampling
and meshing results given in Appendix.

Comparison with CVT-based method: Fig. 5 shows the comparisons on computational time with CVT-based method Chen
et al. (2018) and our particle-based method (in adaptive L2-Gaussian kernel) on Kitten point cloud model for adaptive
resampling and adaptive triangular meshing results. The number of the output samples is fixed at 7000 and the point
numbers of the input cloud points range from 96,000 to 960,000. In CVT-based methods with density function (e.g., Du and
Wang (2005), Chen et al. (2018)), they need to compute the Voronoi cells with density in each iteration, whose accuracy
highly depends on the numerical computation of the quadrature/integral rule on cells. It is easy to note in Fig. 5 that the
denser the input cloud points are, the higher resampling and meshing qualities are. However, our particle-based method
does not need to compute the integral, and we only need to compute the inter-particle energy and force, which is much
faster with a stable higher accuracy in different resolutions of cloud points. For instance, in order to achieve competitive
results, CVT-based method is about 15x times slower than our particle-based method in sequential design (about 80x in
parallel design) as shown in Fig. 5 on Kitten model.

6.3. Quadrilateral resampling and mesh reconstruction

In the quadrilateral resampling, we use multi-scale strategy for sampling optimization to achieve better results, due to the
L∞-Gaussian kernel function is easier to be trapped in its local minima compared with L2-Gaussian kernel function. In all
our quad experiments, we use L4-Gaussian kernel function and two-level multi-scale sampling strategy. The sampling points
at first level are split into four subsampling points at the next level. We found that multi-scale strategy can improve both
the mesh quality as well as the computational speed. Fig. 6 shows the visualization results of our method on quadrilateral
resampling and mesh reconstruction on several point cloud models by using the proposed L4-Gaussian kernel. Table 3 shows
the statistics and timings for quadrilateral resampling computation and surface reconstruction. We can see that our method
can efficiently generate high-quality quad-dominant meshes with high quad-element percentages. There are some more
(large-size) quadrilateral resampling and quad-dominant meshing results on different 3D point clouds given in Appendix.

54 S. Zhong et al. / Computer Aided Geometric Design 71 (2019) 43–62
Fig. 6. Quadrilateral resampling and quad-dominant meshing results on several point cloud models.

Table 3
Statistics and timings for quadrilateral resampling and surface reconstruction by our particle-based method.

Model #Points #Samples #Quad% θmin θavg %<30◦ T R (Para.) T M (Para.) Tri2Quad

Duck 32,000 6000 91.63% 34.17◦ 80.71◦ 0 1.89 s 0.23 s 0.10 s
Bunny 83,191 18,000 91.14% 32.24◦ 80.23◦ 0 3.40 s 0.26 s 0.26 s
Kitten 96,000 16,000 93.43% 30.11◦ 82.07◦ 0 3.66 s 0.24 s 0.23 s
Bimba 254,309 50,000 93.21% 30.60◦ 81.89◦ 0 8.24 s 0.50 s 0.71 s
Lion 575,573 100,000 90.18% 19.74◦ 79.61◦ 0.01% 19.12 s 0.80 s 1.51 s
Buddha 687,347 100,000 90.02% 15.91◦ 79.44◦ 0.009% 15.50 s 0.69 s 1.46 s

Note: #Points: the number of points in the input point clouds. #Samples: the number of output samples. #Quad%: the percentage of quad
elements in the output meshes. T R (Para.): timings for resampling computation in parallel design with 75 iterations (i.e., multi-scale strategy
including 40 iterations in the first level and 35 iterations in the second level). T M (Para.): timings for triangular meshing computation in
parallel design. Tri2Quad: timings for merging the triangles into quad-dominant meshes (in sequential).

S. Zhong et al. / Computer Aided Geometric Design 71 (2019) 43–62 55
Fig. 7. More comparisons on uniform hexagonal resamplings and isotropic triangular meshes with CVT-based method Chen et al. (2018) and our particle-
based method on: Bunny, Bimba, Buddha, Distcap, and Fertility point cloud models.

56 S. Zhong et al. / Computer Aided Geometric Design 71 (2019) 43–62
Fig. 8. More comparisons on uniform hexagonal resamplings and isotropic triangular meshes with CVT-based method Chen et al. (2018) and our particle-
based method on: Left Lung, Right Lung, GOYLE, Lectroid1, and Mumble Sitting point cloud models.

S. Zhong et al. / Computer Aided Geometric Design 71 (2019) 43–62 57
Fig. 9. More comparisons on uniform hexagonal resamplings and isotropic triangular meshes with CVT-based method Chen et al. (2018) and our particle-
based method on: Koolaidman, Thundercrab, and Treefrog point cloud models.

7. Discussion and future work

In this work, we have proposed a unified Lp particle-based method to resample the points with different sampling
patterns, and generalized the particle-based framework from surface meshes to point clouds, and from the sequential to
the parallel. Finally, we can efficiently generate the high-quality isotropic/adaptive/anisotropic hexagonal and quadrilateral
samplings and meshes. We can further improve the computational speed by using GPU-based parallel algorithm and im-
plementation, since the current GPUs have thousands of CUDA cores, especially beneficial to the parallel computations. In
practice, if the point cloud model has sharp features, such as feature edges or feature corners in CAD models, this requires
the user’s tagging as an extra input, due to the difficulty of detecting accurate sharp features from the raw point clouds. We
will consider these cases in our future work. Moreover, we will also investigate the approaches to further optimize current
quad-dominant meshing framework for generating the high-quality all-quad (anisotropic) meshes.

Acknowledgements

We would like to thank the reviewers for their valuable comments. We are grateful to authors of Zhou and Jacobson
(2016) and others for sharing 3D model datasets. This work was partially supported by the NSF IIS-1816511, CNS-1647200,
OAC-1657364, OAC-1845962, Wayne State University Subaward 4207299A of CNS-1821962, NIH 1R56AG060822-01A1, and
ZJNSF LZ16F020002.

Appendix A. Appendix of surface reconstruction by parallel and unified particle-based resampling from point clouds

A.1. More results

A.1.1. Isotropic hexagonal resampling and mesh reconstruction
In order to further demonstrate the better performance of our method compared with CVT-based method Chen et al.

(2018), we provide more experiments including different topology genera and point sizes, in addition to results in the paper.
Fig. 7, Fig. 8, and Fig. 9 show the visualization and mesh angle histogram comparisons with the CVT-based method

and our method (in L2-Gaussian kernel) on several point clouds. Table 4 shows the statistics and timings for resampling

58 S. Zhong et al. / Computer Aided Geometric Design 71 (2019) 43–62
Table 4
More comparison results with CVT-based method Chen et al. (2018) and our particle-based method on statistics and timings for resampling computation
and surface reconstruction.

Model Method #Points #Samples Gmin Gavg θmin θavg %<30◦ T R (Seq.) T M (Seq.) T R (Para.) T M (Para.)

Bunny CVT 83,191 15,000 0.56 0.88 32.52◦ 51.21◦ 0 13.85 s 0.20 s − −
Bunny Particle 83,191 15,000 0.58 0.90 31.59◦ 52.45◦ 0 5.87 s 0.20 s 1.03 s 0.14 s

Bimba CVT 254,309 50,000 0.57 0.88 31.56◦ 51.20◦ 0 54.16 s 0.69 s − −
Bimba Particle 254,309 50,000 0.49 0.89 22.51◦ 52.33◦ 0.005% 22.01 s 0.69 s 4.11 s 0.45 s

Buddha CVT 687,347 100,000 0.41 0.88 21.56◦ 50.87◦ 0.023% 91.06 s 1.15 s − −
Buddha Particle 687,347 100,000 0.44 0.89 19.43◦ 51.73◦ 0.012% 36.75 s 1.15 s 7.52 s 0.64 s

Distcap CVT 208,578 35,000 0.02 0.87 0.56◦ 50.20◦ 0.28% 24.71 s 0.53 s − −
Distcap Particle 208,578 35,000 0.09 0.88 5.10◦ 51.31◦ 0.25% 11.25 s 0.53 s 2.11 s 0.32 s

Fertility CVT 110,209 20,000 0.55 0.88 30.54◦ 51.06◦ 0 25.10 s 0.31 s − −
Fertility Particle 110,209 20,000 0.44 0.89 18.97◦ 52.26◦ 0.012% 10.17 s 0.31 s 1.75 s 0.18 s

Left Lung CVT 199,533 40,000 0.16 0.87 5.76◦ 50.40◦ 0.1% 37.02 s 0.59 s − −
Left Lung Particle 199,533 40,000 0.23 0.89 8.87◦ 51.88◦ 0.03% 15.55 s 0.59 s 2.94 s 0.39 s

Right Lung CVT 191,471 40,000 0.38 0.88 19.88◦ 50.61◦ 0.1% 37.77 s 0.52 s − −
Right Lung Particle 191,471 40,000 0.32 0.89 12.48◦ 51.86◦ 0.01% 15.62 s 0.52 s 2.94 s 0.31 s

GOYLE CVT 136,132 20,000 0.31 0.88 17.44◦ 50.93◦ 0.03% 16.45 s 0.40 s − −
GOYLE Particle 136,132 20,000 0.44 0.90 20.09◦ 52.36◦ 0.02% 5.76 s 0.40 s 1.54 s 0.26 s

Lectroid1 CVT 195,639 30,000 0.19 0.88 8.54◦ 50.84◦ 0.08% 36.16 s 0.52 s − −
Lectroid1 Particle 195,639 30,000 0.17 0.89 10.10◦ 51.99◦ 0.06% 14.42 s 0.52 s 3.03 s 0.37 s

Mumble Sitting CVT 198,023 35,000 0.08 0.88 5.17◦ 50.88◦ 0.2% 39.89 s 0.59 s − −
Mumble Sitting Particle 198,023 35,000 0.10 0.89 5.00◦ 52.01◦ 0.2% 16.44 s 0.59 s 3.42 s 0.41 s

Koolaidman CVT 129,623 25,000 0.46 0.88 22.44◦ 51.10◦ 0.01% 28.05 s 0.43 s − −
Koolaidman Particle 129,623 25,000 0.26 0.90 9.36◦ 52.39◦ 0.01% 11.78 s 0.43 s 2.41 s 0.31 s

Thundercrab CVT 178,540 30,000 0.37 0.88 18.65◦ 50.95◦ 0.05% 25.87 s 0.48 s − −
Thundercrab Particle 178,540 30,000 0.24 0.89 12.24◦ 52.08◦ 0.03% 9.10 s 0.48 s 2.34 s 0.31 s

Treefrog CVT 154,975 35,000 0.07 0.88 2.45◦ 50.86◦ 0.4% 49.11 s 0.64 s − −
Treefrog Particle 154,975 35,000 0.10 0.89 5.21◦ 51.88◦ 0.3% 19.54 s 0.64 s 4.06 s 0.41 s

Note: #Points: the number of points in the input point clouds. #Samples: the number of output samples. T R (Seq.) and T R (Para.): timings for resampling computations in
sequential and parallel designs with 35 iterations. T M (Seq.) and T M (Para.): timings for meshing computations in sequential and parallel designs. The best values are highlighted
in bold for each group. It is noted that the timings for meshing computations on CVT and Particle methods are the same, since both of them use Geogram to compute the final
mesh.

computation and surface reconstruction with CVT-based method Chen et al. (2018) and our particle-based method. Our
results demonstrate that we can consistently yield better sampling, mesh angle, and triangle quality (especially Gavg , θavg),
as well as the faster computational speed.

Fig. 10 shows more closeup visualization of the uniform hexagonal resampling and isotropic triangular meshing results
on large-size Lucy point cloud model.

A.1.2. Anisotropic resampling and mesh reconstruction
Fig. 11 shows two more visualization results of our method (in anisotropic L2-Gaussian kernel) on anisotropic resam-

pling and mesh reconstruction on Bunny and GOYLE point cloud models with curvature-based anisotropic metrics. The
final mesh angle histograms show that our method has good mesh quality to match the input curvature-based anisotropy.
Table 5 shows the statistics and timings for anisotropic resampling computation and surface reconstruction by using our
particle-based method.

A.1.3. Quadrilateral resampling and mesh reconstruction
Fig. 12 shows the visualization results of our method on quadrilateral resampling and mesh reconstruction on some

more point cloud models by using the proposed L4-Gaussian kernel. Table 6 shows the statistics and timings for quadrilat-
eral resampling computation and surface reconstruction. We can see that our method can efficiently generate high-quality
quad-dominant meshes with high quad-element percentages.

In order to demonstrate the scalability of the proposed method on large-size resampling and meshing of point clouds,
Fig. 13 shows the final results with quadrilateral resamplings ranging from 160K to 220K of the original point clouds with
more than 1M points. It is noted that our particle-based method is quite efficient on the large-size models, and it takes
66.42 s and 77.33 s totally for resampling and meshing (using three-level multi-scale strategy with 150 iterations) for Arch
and Lucy models (in parallel implementation), respectively. The final resampling and mesh quality are quite good as well.

S. Zhong et al. / Computer Aided Geometric Design 71 (2019) 43–62 59
Fig. 10. More closeup visualization of the uniform hexagonal resampling and isotropic triangular meshing results on large-size Lucy point cloud model.

Fig. 11. More anisotropic resampling and anisotropic triangular meshing results on Bunny and GOYLE point cloud models with curvature-based anisotropies.

60 S. Zhong et al. / Computer Aided Geometric Design 71 (2019) 43–62
Table 5
More statistics and timings for anisotropic resampling and reconstruction by our
particle-based method.

Model #Points #Samples Stretch T R (Para.) T M (Para.)

Bunny 124,800 10,000 [1,6.1] 10.90 s 0.28 s
GOYLE 95,966 25,000 [1,5.4] 21.84 s 0.36 s

Note: #Points: the number of points in the input point clouds. #Samples: the
number of output samples. T R (Para.): timings for resampling computation in
parallel design with 50 iterations. T M (Para.): timings for meshing computation
in parallel design.

Fig. 12. More quadrilateral resampling and quad-dominant meshing results on point cloud models.

Table 6
More statistics and timings for quadrilateral resampling and reconstruction by our particle-based method.

Model #Points #Samples #Quad% θmin θavg %<30◦ T R (Para.) T M (Para.) Tri2Quad

Eight 79,999 8000 92.65% 32.46◦ 81.57◦ 0 1.94 s 0.19 s 0.14 s
Fertility 110,209 20,000 91.83% 30.08◦ 80.76◦ 0 6.01 s 0.25 s 0.29 s
Gargo 90,898 24,000 88.29% 23.04◦ 78.24◦ 0.01% 5.04 s 0.31 s 0.38 s
Sapphos Head 271,937 60,000 92.85% 29.94◦ 81.56◦ 0.005% 10.67 s 0.53 s 0.86 s
GOYLE 136,132 28,000 89.24% 26.17◦ 79.22◦ 0.01% 6.96 s 0.40 s 0.40 s
Koolaidman 129,623 30,000 93.27% 31.61◦ 80.59◦ 0 6.71 s 0.36 s 0.48 s

Note: #Points: the number of points in the input point clouds. #Samples: the number of output samples. #Quad%: the percentage
of quad elements in the output meshes. T R (Para.): timings for resampling computation in parallel design with 75 iterations (i.e.,
multi-scale strategy including 40 iterations in the first level and 35 iterations in the second level). T M (Para.): timings for triangular
meshing computation in parallel design. Tri2Quad: timings for merging the triangles into quad-dominant meshes (in sequential).

S. Zhong et al. / Computer Aided Geometric Design 71 (2019) 43–62 61
Fig. 13. More quadrilateral resampling and quad-dominant meshing results on large-size Arch and Lucy point cloud models.

62 S. Zhong et al. / Computer Aided Geometric Design 71 (2019) 43–62
References

ALICE/INRIA Nancy, 2018. Geogram. http://alice .loria .fr /software /geogram /doc /html /index .html.
Boltcheva, D., Lévy, B., 2017. Surface reconstruction by computing restricted Voronoi cells in parallel. Comput. Aided Des. 90, 123–134.
Bossen, F., Heckbert, P., 1996. A pliant method for anisotropic mesh generation. In: 5th International Meshing Roundtable, pp. 63–76.
Bronson, J., Levine, J., Whitaker, R., 2012. Particle systems for adaptive, isotropic meshing of CAD models. Eng. Comput. 28, 331–344.
Chen, J., Ge, X., Wei, L., Wang, B., Wang, Y., Wang, H., Fei, Y., Qian, K., Yong, J., Wang, W., 2013. Bilateral blue noise sampling. ACM Trans. Graph. 32,

216:1–216:11.
Chen, Z., Yuan, Z., Choi, Y., Liu, L., Wang, W., 2012. Variational blue noise sampling. IEEE Trans. Vis. Comput. Graph. 18, 1784–1796.
Chen, Z., Zhang, T., Cao, J., Zhang, Y., Wang, C., 2018. Point cloud resampling using centroidal Voronoi tessellation methods. Comput. Aided Des. 102, 12–21.
Dey, T., Ray, T., 2010. Polygonal surface remeshing with Delaunay refinement. Eng. Comput. 26, 289–301.
Du, Q., Faber, V., Gunzburger, M., 1999. Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41, 637–676.
Du, Q., Gunzburger, M., Ju, L., 2003. Constrained centroidal Voronoi tessellations for surfaces. SIAM J. Sci. Comput. 24, 1488–1506.
Du, Q., Wang, D., 2005. Anisotropic centroidal Voronoi tessellations and their applications. SIAM J. Sci. Comput. 26, 737–761.
Edelsbrunner, H., Shah, N., 1994. Triangulating topological spaces. In: Symposium on Computational Geometry, pp. 285–292.
Fei, Y., Rong, G., Wang, B., Wang, W., 2014. Parallel L-BFGS-B algorithm on GPU. Comput. Graph. 40, 1–9.
Frey, P., Borouchaki, H., 1999. Surface mesh quality evaluation. Int. J. Numer. Methods Eng. 45, 101–118.
Fu, X., Liu, Y., Snyder, J., Guo, B., 2014. Anisotropic simplicial meshing using local convex functions. ACM Trans. Graph. 33, 182:1–182:11.
Horn, R., Johnson, C., 1990. Matrix Analysis. Cambridge University Press.
Huang, H., Li, D., Zhang, H., Ascher, U., Cohen-Or, D., 2009. Consolidation of unorganized point clouds for surface reconstruction. ACM Trans. Graph. 28,

176:1–176:7.
Huang, H., Wu, S., Gong, M., Cohen-Or, D., Ascher, U., Zhang, H., 2013. Edge-aware point set resampling. ACM Trans. Graph. 32, 9:1–9:12.
Itoh, T., Shimada, K., 2002. Automatic conversion of triangular meshes into quadrilateral meshes with directionality. Int. J. CAD/CAM 1, 20–38.
Lévy, B., 2016. Robustness and efficiency of geometric programs: the predicate construction kit (PCK). Comput. Aided Des. 72, 3–12.
Lévy, B., Bonneel, N., 2012. Variational anisotropic surface meshing with Voronoi parallel linear enumeration. In: 21st International Meshing Roundtable,

pp. 349–366.
Lévy, B., Liu, Y., 2010. Lp centroidal Voronoi tessellation and its applications. ACM Trans. Graph. 29, 119:1–119:11.
Liao, B., Xiao, C., Jin, L., Fu, H., 2013. Efficient feature-preserving local projection operator for geometry reconstruction. Comput. Aided Des. 45, 861–874.
Lipman, Y., Cohen-Or, D., Levin, D., Tal-Ezer, H., 2007. Parameterization-free projection for geometry reconstruction. ACM Trans. Graph. 26, 22:1–22:6.
Liu, D., Nocedal, J., 1989. On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503–528.
Liu, Y., 2010. HLBFGS. https://xueyuhanlang .github .io /software /hlbfgs/.
Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D., Lu, L., Yang, C., 2009. On centroidal Voronoi tessellation – energy smoothness and fast computation. ACM Trans.

Graph. 28, 101:1–101:17.
Lloyd, S., 1982. Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–137.
Luo, C., Ge, X., Wang, Y., 2018. Uniformization and density adaptation for point cloud data via graph Laplacian. In: Computer Graphics Forum, pp. 325–337.
Meyer, M., Georgel, P., Whitaker, R., 2005. Robust particle systems for curvature dependent sampling of implicit surfaces. In: Shape Modeling and Applica-

tions, 2005 International Conference, pp. 124–133.
Mount, D., Arya, S., 1998. ANN: Library for Approximate Nearest Neighbour Searching.
Ni, S., Zhong, Z., Huang, J., Wang, W., Guo, X., 2018. Field-aligned and lattice-guided tetrahedral meshing. Comput. Graph. Forum 37, 161–172.
Öztireli, A.C., Alexa, M., Gross, M., 2010. Spectral sampling of manifolds. ACM Trans. Graph., 168:1–168:8.
Preiner, R., Mattausch, O., Arikan, M., Pajarola, R., Wimmer, M., 2014. Continuous projection for fast L1 reconstruction. ACM Trans. Graph. 33, 47:1–47:13.
Ray, N., Sokolov, D., Lefebvre, S., Lévy, B., 2018. Meshless Voronoi on the GPU. ACM Trans. Graph. 37, 265:1–265:12.
Rong, G., Liu, Y., Wang, W., Yin, X., Gu, D., Guo, X., 2011. GPU-assisted computation of centroidal Voronoi tessellation. IEEE Trans. Vis. Comput. Graph. 17,

345–356.
Rong, G., Tan, T., 2006. Jump flooding in GPU with applications to Voronoi diagram and distance transform. In: Proceedings of the Symposium on Interactive

3D Graphics and Games, pp. 109–116.
Rouxel-Labbé, M., Wintraecken, M., Boissonnat, J.D., 2016. Discretized Riemannian Delaunay triangulations. Proc. Eng. 163, 97–109.
Rusu, R., 2009. Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments. Ph.D. thesis. Computer Science Department, Technische

Universitaet Muenchen, Germany.
Rusu, R., Cousins, S., 2011. 3D is here: Point Cloud Library (PCL). In: IEEE International Conference on Robotics and Automation. ICRA, Shanghai, China.
Secord, A., 2002. Weighted Voronoi stippling. In: Proceedings of the 2nd International Symposium on Non-photorealistic Animation and Rendering,

pp. 37–43.
Shapiro, P., Martel, H., Villumsen, J., Owen, J., 1996. Adaptive smoothed particle hydrodynamics, with application to cosmology: methodology. Astrophys. J.

Suppl. 103, 269–330.
Shimada, K., Gossard, D., 1995. Bubble mesh: automated triangular meshing of non-manifold geometry by sphere packing. In: Proceedings of the Third ACM

Symposium on Solid Modeling and Applications, pp. 409–419.
Shimada, K., Yamada, A., Itoh, T., 1997. Anisotropic triangular meshing of parametric surfaces via close packing of ellipsoidal bubbles. In: 6th International

Meshing Roundtable, pp. 375–390.
Valette, S., Chassery, J., Prost, R., 2008. Generic remeshing of 3D triangular meshes with metric-dependent discrete Voronoi diagrams. IEEE Trans. Vis.

Comput. Graph. 14, 369–381.
Vasconcelos, C., Sá, A., Carvalho, P., Gattass, M., 2008. Lloyd’s algorithm on GPU. In: International Symposium on Visual Computing. Springer, pp. 953–964.
Witkin, A., Heckbert, P., 1994. Using particles to sample and control implicit surfaces. In: Proceedings of the 21st Annual Conference on Computer Graphics

and Interactive Techniques, pp. 269–277.
Yamakawa, S., Shimada, K., 2000. High quality anisotropic tetrahedral mesh generation via packing ellipsoidal bubbles. In: 9th International Meshing

Roundtable, pp. 263–273.
Yan, D., Guo, J., Wang, B., Zhang, X., Wonka, P., 2015. A survey of blue-noise sampling and its applications. J. Comput. Sci. Technol. 30, 439–452.
Yan, D., Lévy, B., Liu, Y., Sun, F., Wang, W., 2009. Isotropic remeshing with fast and exact computation of restricted Voronoi diagram. Comput. Graph.

Forum 28, 1445–1454.
Zhong, Z., Guo, X., Wang, W., Lévy, B., Sun, F., Liu, Y., Mao, W., 2013. Particle-based anisotropic surface meshing. ACM Trans. Graph. 32, 99:1–99:14.
Zhong, Z., Hua, J., 2016. Kernel-based adaptive sampling for image reconstruction and meshing. Comput. Aided Geom. Des. 43, 68–81.
Zhong, Z., Shuai, L., Jin, M., Guo, X., 2014. Anisotropic surface meshing with conformal embedding. Graph. Models 76, 468–483.
Zhong, Z., Wang, W., Lévy, B., Hua, J., Guo, X., 2018. Computing a high-dimensional Euclidean embedding from an arbitrary smooth Riemannian metric.

ACM Trans. Graph. 37, 62:1–62:16.
Zhou, Q., Jacobson, A., 2016. Thingi10K: a dataset of 10,000 3D-printing models. arXiv preprint. arXiv:1605 .04797.

http://alice.loria.fr/software/geogram/doc/html/index.html
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib626F6C7463686576613230313773757266616365s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib426F7373656E4865636B626572743A31393936s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib42726F6E736F6E3A32303132s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib6368656E3230313362696C61746572616Cs1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib6368656E3230313362696C61746572616Cs1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib6368656E32303132766172696174696F6E616Cs1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib4368656E3A43414432303138s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib4465793A454332303130s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib44753A31393939s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib44753A32303033s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib647532303035616E69736F74726F706963s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib4564656C736272756E6E65723A53434731393934s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib66656932303134706172616C6C656Cs1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib667265793139393773757266616365s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib46753A32303134s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib686F726E313939306D6174726978s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib6875616E6732303039636F6E736F6C69646174696F6Es1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib6875616E6732303039636F6E736F6C69646174696F6Es1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib6875616E673230313365646765s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib69746F68323030316175746F6D61746963s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib44424C503A6A6F75726E616C732F6361642F4C6576793136s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib4C6576793A32303132s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib4C6576793A32303132s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib6C6576793230313070s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib6C69616F32303133656666696369656E74s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib6C69706D616E32303037706172616D65746572697A6174696F6Es1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib6C6975313938396C696D69746564s1
https://xueyuhanlang.github.io/software/hlbfgs/
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib4C69753A544F4732303039s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib4C69753A544F4732303039s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib4C6C6F79643A54495431393832s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib6C756F32303138756E69666F726D697A6174696F6Es1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib6D6579657232303035726F62757374s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib6D6579657232303035726F62757374s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib6D6F756E7431393938616E6Es1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib4E695F43474632303138s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib6F7A746972656C6932303130737065637472616Cs1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib707265696E657232303134636F6E74696E756F7573s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib7261793A68616C2D566F726F6E6F69s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib726F6E6732303131677075s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib726F6E6732303131677075s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib726F6E67323030366A756D70s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib726F6E67323030366A756D70s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib726F7578656C3230313664697363726574697A6564s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib52757375446F63746F72616C446973736572746174696F6Es1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib52757375446F63746F72616C446973736572746174696F6Es1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib527573755F49435241323031315F50434Cs1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib5365636F72643A32303032s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib5365636F72643A32303032s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib5368617069726F3A31393936s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib5368617069726F3A31393936s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib7368696D61646131393935627562626C65s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib7368696D61646131393935627562626C65s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib5368696D6164613A31393937s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib5368696D6164613A31393937s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib56616C657474653A5456434732303038s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib56616C657474653A5456434732303038s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib766173636F6E63656C6F73323030386C6C6F7964s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib5769746B696E3A534947475241504831393934s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib5769746B696E3A534947475241504831393934s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib59616D616B6177613A32303030s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib59616D616B6177613A32303030s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib79616E32303135737572766579s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib59616E3A43474632303039s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib59616E3A43474632303039s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib5041534D3A32303133s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib7A686F6E67323031366B65726E656Cs1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib5A686F6E673A474D32303134s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib5A686F6E673A323031383A484445s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib5A686F6E673A323031383A484445s1
http://refhub.elsevier.com/S0167-8396(19)30025-1/bib7A686F75323031367468696E676931306Bs1

	Surface reconstruction by parallel and uniﬁed particle-based resampling from point clouds
	1 Introduction
	2 Related work
	2.1 Point sampling methods
	2.2 CVT-based methods
	2.3 Particle-based methods

	3 A novel Lp particle formulation
	3.1 Hexagonal sampling: L2-Gaussian kernel
	3.2 Quadrilateral sampling: L∞-Gaussian kernel
	3.3 Anisotropic and adaptive sampling
	3.4 Particle objective function

	4 Algorithm design on point clouds
	4.1 Tangent plane disk
	4.2 Kernel width
	4.3 Particle optimization
	4.4 Surface reconstruction
	4.4.1 Triangular meshing
	4.4.2 Quad-dominant meshing

	5 Evaluations
	5.1 Triangular mesh quality
	5.2 Quad-dominant mesh quality

	6 Results
	6.1 Isotropic hexagonal resampling and mesh reconstruction
	6.2 Anisotropic and adaptive resampling and mesh reconstruction
	6.3 Quadrilateral resampling and mesh reconstruction

	7 Discussion and future work
	Acknowledgements
	Appendix A Appendix of surface reconstruction by parallel and uniﬁed particle-based resampling from point clouds
	A.1 More results
	A.1.1 Isotropic hexagonal resampling and mesh reconstruction
	A.1.2 Anisotropic resampling and mesh reconstruction
	A.1.3 Quadrilateral resampling and mesh reconstruction

	References

