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1. Introduction

With the rapid development of various types of 3D scanners and imaging devices, point clouds and meshes are most
common representations of 3D shapes. They are widely used in a variety of applications, such as designing 3D models
for manufacturing, creating 3D shapes for animations, representing 3D objects for autonomous driving, etc. How to effi-
ciently and effectively build such models is a challenging research problem. Traditionally, large-size and high-resolution raw
point clouds or meshes are required to represent complicated 3D objects with a lot of features and details. It is difficult to
build a real-time system to process the high-resolution 3D models in real 3D scenarios, such as registration, segmentation,
classification, simulation, compression, transmission, etc. Hence it requires an unsufferable computational time and unaf-
fordable storage, e.g., a 3D point cloud of 30M samples has 1GB data size. Therefore, it is important to resample the original
dense point clouds into the relative sparse point sets with high-quality and high-fidelity, and then compute the meshes to
reconstruct the 3D surfaces.

Point cloud resampling and surface remeshing are possible solutions to address the aforementioned problem. There are
extensive methods for uniform and adaptive resampling from point clouds Lipman et al. (2007), Huang et al. (2009), Liao
et al. (2013), Huang et al. (2013), Preiner et al. (2014), Luo et al. (2018), Chen et al. (2018), and isotropic and anisotropic
remeshing from surface meshes Shimada and Gossard (1995), Shimada et al. (1997), Du et al. (1999, 2003), Yan et al. (2009),
Du and Wang (2005), Valette et al. (2008), Lévy and Liu (2010), Zhong et al. (2013).
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Among them, centroidal Voronoi tessellation (CVT) is a popular technique that has been successfully applied to
isotropic/anisotropic resampling and remeshing. However, the CVT-based methods need to compute Voronoi diagram it-
eratively during the energy optimization Du et al. (1999, 2003), Yan et al. (2009), especially in adaptive and anisotropic
cases Du and Wang (2005), Valette et al. (2008), Lévy and Liu (2010), Chen et al. (2018), which are complicated and time-
consuming. On the other hand, in order to improve the efficiency and simplicity, particle-based methods are developed
to formulate the inter-particle energy or force, and then generate the different sampling distributions Witkin and Heckbert
(1994), Bossen and Heckbert (1996), Shimada and Gossard (1995), Shimada et al. (1997), Zhong et al. (2013), Ni et al. (2018).
The particle insertion and deletion strategies are needed in most previous methods, which may not be efficient. Besides that,
to our knowledge, all the previous particle-based methods are not designed and implemented in parallel schemes; and also
not developed for point cloud applications.

In this paper, we propose a new unified particle-based method for high-quality resamplings from the input point clouds.
The proposed particle-based optimization framework can be easily computed in a parallel scheme with the high efficiency.
Finally, based on the optimized particle distribution, the surface meshes are reconstructed by computing the restricted
Voronoi diagram (RVD) with a parallel implementation. The experimental results are demonstrated by using extensive exam-
ples and evaluation criteria as well as compared with the state-of-the-art in the point cloud resampling and reconstruction.
The key contributions of our work are as follows:

e It proposes a unified L,-Gaussian kernel function (p =2 or p = 00), by leveraging the classical L,-Gaussian kernel,
to simulate the inter-particle energy and force to optimize a set of particles to form the high-quality uniform/adap-
tive/anisotropic hexagonal and quadrilateral patterns from the input point clouds (with adaptive/anisotropic metrics).

e The L,-Gaussian kernel with squared L, norm (such as p > 4) is a new and effective kernel formulation in the particle-
based method for quadrilateral sampling and meshing.

e To our knowledge, this is the first time that a parallel particle-based computational algorithm is proposed for resampling
of point clouds. Our empirical evaluations in several scenarios demonstrate that the proposed method is a practical
utility with the fast speed.

2. Related work

In this section, we only review some most related work on point sampling methods, CVT-based methods, and particle-
based methods for 3D shape surfaces/point clouds.

2.1. Point sampling methods

In computer graphics, sampling distribution on a shape has become an interesting research topic in the past few decades.
There are some methods proposed to generate uniform distributions with blue noise properties on a surface mesh, such
as Oztireli et al. (2010), Chen et al. (2012, 2013), Yan et al. (2015), which have been used in many applications such as
stippling, rendering, as well as surface remeshing. Lipman et al. (2007) introduced the Locally Optimal Projection (LOP)
operator for surface approximation from point-set data. Then, Huang et al. (2009) proposed an improved weighted-LOP
(WLOP) operator, which is combined with a novel normal estimation and propagation algorithm, and this method can pro-
duce a set of clean and uniformly distributed points endowed with reliable normals. Liao et al. (2013) further considered
both spatial and geometric feature information of the point clouds and proposed a feature-preserving LOP operator. Huang
et al. (2013) proposed an edge-aware point set resampling method. Preiner et al. (2014) presented a continuous formulation
of the WLOP operator and achieved a significant speed acceleration. Recently, Luo et al. (2018) presented a point cloud
resampling method based on the Gaussian-weighted graph Laplacian to make the point distribution conformal to a target
density distribution. All the aforementioned work does generally focus on uniform/adaptive point sampling without con-
sidering anisotropic and specific sampling patterns (e.g., hexagonal or quadrilateral). In this work, we propose an efficient
method that constructs high-quality isotropic/anisotropic hexagonal/quadrilateral resampling results from point clouds.

2.2. CVT-based methods

A centroidal Voronoi tessellation (CVT) is a special Voronoi diagram, where each generating sample coincides with the
centroid of its Voronoi cell Du et al. (1999). The Lloyd relaxation Lloyd (1982) and a quasi-Newton energy optimization
solver Liu et al. (2009) are widely used to compute CVT and generate a regular sampling. In order to make the computation
practical on 3D shape surfaces, the restricted Voronoi diagram (RVD) or restricted Delaunay triangulation (RDT) Edelsbrunner
and Shah (1994) are used in meshing algorithms Dey and Ray (2010). Then, Du et al. (2003) defined a restricted CVT
theoretically and then Yan et al. (2009) developed an efficient algorithm to compute the RVD for isotropic surface remeshing.

Du and Wang (2005) further extended the concept of CVT to the anisotropic case, that is anisotropic CVT (ACVT). An
anisotropic Voronoi diagram (AVD) with the given Riemannian metric needs to be constructed in each Lloyd iteration,
which is time-consuming. To improve the computational speed, Valette et al. (2008) proposed a discrete approximation
of ACVT by clustering the vertices of a dense triangulation of the domain, by sacrificing the mesh quality. Lévy and Bon-
neel (2012) extended the computation of CVT to a 6D space (using vertex positions and normals) in order to achieve the
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curvature-adaptation for anisotropic meshing, but did not provide user’s flexibility to control the anisotropy. Zhong et al.
(2014) provided a method to solve the anisotropic meshing by conformally mapping the metric surface to an appropriate
2D parametric domain and then compute CVT on it, but it cannot handle surfaces with complicated topologies. Lévy and
Liu (2010) introduced an L,-CVT, which is to minimize a higher-order norm of the coordinates on the Voronoi cells with
the input surface meshes, and generate triangular and quad-dominant surface meshes. Recently, Chen et al. (2018) extended
the L,-CVT method for resampling isotropic or anisotropic distributions from a given point cloud.

In order to further improve the computations on CVT or Voronoi diagram, Vasconcelos et al. (2008) proposed to utilize
GPU to compute CVT in a 2D plane, by using a pre-defined mask to estimate the Voronoi cell for each site. Rong et al.
(2011) presented a GPU-assisted method to compute the constrained CVT on a surface, based on its 2D geometry image.
The surface is discretized as pixels on a rectangular domain, and then the discrete Voronoi diagram is computed by using
the jump flooding algorithm Rong and Tan (2006). Fei et al. (2014) solved the CVT problem by improving the non-linear
optimization on GPU with a parallel L-BFGS-B algorithm. Recently, Boltcheva and Lévy (2017) presented a parallel method
for reconstructing a 3D surface triangulation from an input point set by computing the RVD and implemented the algorithm
by using a multi-core CPU. Ray et al. (2018) proposed a GPU-based algorithm to compute a 3D Voronoi diagram. Compared
to all the above CVT-based approaches, our particle-based scheme avoids the construction of Voronoi diagram/AVD in the
intermediate iterations of energy optimization. Thus, it can achieve faster performance in the computational complexity as
demonstrated in Sec. 6.

2.3. Particle-based methods

Witkin and Heckbert (1994) constructed particles with pair-wise Gaussian energy to sample and control implicit sur-
faces. Meyer et al. (2005) formulated the energy kernel as a modified cotangent function with finite support. Bronson et al.
(2012) worked on the particle-based isotropic and adaptive meshing of CAD models by using the parametric space of each
surface patch. Zhong and Hua (2016) introduced a kernel-based adaptive sampling approach for 2D/3D image reconstruction
and triangular meshing, but it does not handle with sampling for mesh or point cloud surfaces. As for anisotropic meshing,
Bossen and Heckbert (1996) incorporated the metric into a distance function to model the repulsion and attraction forces
between particles. Shimada and Gossard (1995), Shimada et al. (1997), Yamakawa and Shimada (2000) proposed physics-
based relaxation of “bubbles” with a bounded cubic function of the distance to model the inter-bubble forces, and extended
it to anisotropic meshing by converting spherical bubbles to ellipsoidal ones. Both Bossen et al. and Shimada et al.’s work
requires to adaptively insert or delete particles/bubbles in certain regions. Thus, it takes a longer convergence time. Adap-
tive Smoothed Particle Hydrodynamics (ASPH) Shapiro et al. (1996) uses inter-particle Gaussian kernels with an anisotropic
smoothing tensor, but it directly formulates the energy in the original space without using the embedding space concept.
This procedure leads to an inaccurate anisotropy in the computed mesh as demonstrated in Zhong et al. (2013).

In order to address the above limitations, Zhong et al. (2013) showed that by formulating an accurate inter-particle
energy optimization for anisotropic meshing in a high-d embedding space, such optimizations have the fast convergence
without any need for the explicit control of particle population. Ni et al. (2018) proposed a particle-based method to
optimize a set of particles to form the desired lattice pattern for tetrahedral meshing. In their method, the particle insertion
and deletion strategies are required, which may not be as efficient as our proposed method. Besides that, all the previous
particle-based methods are not designed and implemented in the parallel scheme.

3. Anovel L, particle formulation

In the particle-based framework, considering each sample as a particle, the potential energy between particles deter-
mines inter-particle forces. When forces applied on each particle become equilibrium, particles reach the optimal balanced
state with the specified distribution under the given metric (e.g., isotropic or anisotropic). In the following subsection, we
introduce and extend L, optimal approximation idea into a unified L, in the designed inter-particle energy, which can
guide particles to form the hexagonal and quadrilateral patterns in a 3D surficial (2-manifold) space when they reach the
equilibrium.

Merits: (1) The progress of the physically-based system leads to force equilibrium of particles in the nature, such as
honeycomb/grid, glass/steel panel structures, etc. Particle system is a natural design in the mesh generation Shimada and
Gossard (1995), Shimada et al. (1997), Zhong et al. (2013), Ni et al. (2018) as well as the shape sampling Witkin and
Heckbert (1994), Meyer et al. (2005), since it is essentially structurally-aware and physically-aware. (2) The computational
complexity is relatively low (i.e., considering particle interactions with a small neighborhood) and the implementation is
very simple, which is superbly efficient among sampling algorithms. The details will be given in Sec. 3.4 and Sec. 6. For ex-
ample, compared with 2D CVT, it is complicated to compute restricted Voronoi cells on the shape surface, and optimize the
sampling positions by using CVT method. (3) The particle-based system is easily formulated in the (isotropic or anisotropic)
metric space as discussed in the following of this section, and the inter-particle energy can be independently calculated for
parallelism. The details will be given in Sec. 4.3 and Algorithm 1.

Definition: The aim of L,-Gaussian kernel is to propose a new energy function well suited to variational hexagonal
and quadrilateral resampling. Given n particles with their positions X = {x;|i =1, ...,n} on the point clouds of the shape
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Fig. 1. The visualization of the proposed Gaussian kernels with different norms. The top row is visualized from the 2D x-y view and the bottom row is
visualized from the 3D view. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

surface 2 embedded in R™ (m is the dimension of 2-manifold in this work), the inter-particle energy can be defined by an
Lp-Gaussian kernel:

i %X
E [,=¢ 202 (1)
where 0 = c,;+/|R2|/n is a kernel width. |Q2| denotes the area of underlying shape surface (represented by point clouds
in this work) and c, is a constant. p is used to define different norms in finite-dimensional vector spaces. More detailed
discussion about the kernel width and c, will be given in Sec. 4.2. In this work, we investigate several potential variants of
Lp-Gaussian kernel for generating different sampling patterns in the following subsections.

3.1. Hexagonal sampling: L,-Gaussian kernel

Lp-Gaussian kernel, i.e., p =2 in Eq. (1), is a nonnegative radially-symmetric exponential function (Fig. 1 a). Essentially,
in 2D kernel, domain is a circle, which leads to simulate the interactions between particles and form the ideal 2D hexagonal
patterns of the sampling. L,-Gaussian kernel is C*° continuous, ensuring to obtain a good optimum. For instance, the
previous CVT-based energies for meshing are at most C2 continuity Liu et al. (2009). The previous particle-based work, such
as Zhong et al. (2013), Ni et al. (2018), Zhong et al. (2018), only designs and uses L,-Gaussian kernel for mesh generation.
In our work, we are working on the L-Gaussian kernel for resampling on point clouds.

Then, the gradient of E'L]2 w.L.t. X; is the force F'LJ2 applied on particle j by the other particle i:

y i C_x) kX3
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3.2. Quadrilateral sampling: L~,-Gaussian kernel

L-Gaussian kernel, i.e., p = oo in Eq. (1), is a nonnegative grid-symmetric exponential function. Essentially, in 2D kernel,
domain is a square, which leads to simulate the interactions between particles and form the ideal 2D quad patterns of the
sampling. However, the Ly, norm is not differentiable. The L, norm is a good approximation, and easier to manipulate alge-
braically (Fig. 1 b). ||-|| represents the L, norm. In other words, |x||, = ¥/[x[P + [y[P + |z|P and ||x||f7 = %/|x|P + |y|P + |z|P.
In this work, we use L4 in a Gaussian kernel for quadrilateral sampling.

Then, the gradient of E’L]p W.L.t. X; is the force F'Ljp applied on particle j by the other particle i:

. 3Eij Xi — X)) Ix: — x;l12 lIx;—x; 12
FI]_J — Lp =( 1 _1) || 1 5 ]||p677_ (3)
P OXj o2 |Ixi — Xjllp

Importance of squared L, norm in Gaussian kernel: The visualization of the proposed Gaussian kernels with different
norms is illustrated in Fig. 1. Fig. 1 (a) shows the classical L,-Gaussian kernel with circular iso-contours. Fig. 1 (b) and (c)
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show two variants of L,-Gaussian kernel with square/quad iso-contours (e.g., L4 norm as an example). Their key difference
is: (b) uses the squared L, norm and (c) uses the pth power of L, norm (this is intuitive from L,-CVT Lévy and Liu (2010)).
Through Fig. 1, it is easy to see that the domain area and variance ratio of iso-contours in (b) are quite similar to those in
(a), except the shape of the iso-contours, i.e., (a) is circular and (b) is square/quad. That is what we exactly desire. When
we apply the pth power of L, norm in a Gaussian kernel, the iso-contours are still square. However, the larger iso-contour
values of the kernel are dominantly occupied in the domain and they are changing dramatically and steeply around domain
boundary, which leads to the instability of the inter-particle energy and force/gradient.

3.3. Anisotropic and adaptive sampling

In order to simulate the adaptive or anisotropic sampling patterns, we can integrate the density or anisotropic metric in
the proposed Lp-Gaussian kernel function. In anisotropic case, at a given point X € €, the dot product between two vectors
a and b is denoted by (a, b)m(x), which is defined over the tangent space of the surface (the point cloud). The metric can be
represented by an m x m symmetric, positive, and definite (SPD) matrix M(x). Its square root Q(x) = /M(X) is also a unique
SPD matrix Horn and Johnson (1990), which is defined on vectors a and b. The anisotropic Ly-Gaussian kernel function is:

fi o HQU‘(’;{(;ZXJ')"% @
aniso ’
where Q;; is the anisotropic metric at the middle position of the particles i and j and it is defined on the vector x; — X;.
Then the gradient of EY s the force F/ applied on particle j by the other particle i in the anisotropic embedding

aniso aniso
space (derived from Eq. (3) with integrating metric Q;;):
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It is noted that when M(x) = p(x)I, where I is an identity matrix, it defines an adaptive metric with the density function
p(X). Then, Eq. (4) becomes the adaptive L,-Gaussian kernel function.

. (5)

3.4. Particle objective function

Once the inter-particle L,-Gaussian energy is defined, the particle optimization is formulated as an energy minimization
problem, i.e., to sum up all inter-particle energies. The total objective function is:

EX) =) Y EVi~Y" > EY, (6)
i j# i jeN()

where X = {x;|i =1, ..., n}, which are constrained in the domain of the point cloud surface 2, N(i) is the set of neighbors of
particle i within five standard deviations of the Gaussian energy kernel (50 ). The key reason is that we only need to consider
the inter-particle energies within a certain neighborhood, instead of every pair of particles, since the Gaussian energy is
close to 0 when the neighborhood distance is larger than 50. With the help of k-d tree data structure for computing
K-Nearest Neighbors (K-NN), the computational complexity of particle optimization is O(nlogn), instead of O(n?). This
computational complexity also includes the k-d tree construction. In our implementation, Approximate Nearest Neighbor
(ANN) library Mount and Arya (1998) is applied to efficiently search local neighborhoods. It is noted that, in practice, the
number of output particles (samples) in this work is less than 1M, so that logn < 20 (e.g., even if n ~ 1B, logn = 30). In
conclusion, the practical computational performance of the proposed particle system is quite efficient.

4. Algorithm design on point clouds

In the following subsections, the details of the key components in the proposed algorithm on point clouds are discussed,
i.e,, tangent plane disk, kernel width, particle optimization, and surface reconstruction.

4.1. Tangent plane disk

Point clouds do not have explicit surface information, so we need to define the local tangent planes to constrain the
particles during the optimization. The idea we use is to compute the local tangent plane disks derived from the original
point clouds to approximate the underlying surfaces. The first step is to build a k-d tree for all the input point clouds. Then,
the normal of each point is computed by using the least-square plane fitting estimation Rusu (2009) based on K-NN. The
number of neighbors is 30 in our experiments. The normals do not need to be oriented, since we only use normals to
define the tangent planes. After that, we need to compute suitable radiuses to define local tangent plane disks. The radius
for every disk has to be adaptive because the original point clouds are not uniformly distributed, though they are relatively
dense. There is a trade-off for overlaps and gaps between disks. When larger radius is used, more overlaps will exist. On
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the other hand, when smaller radius is used, more gaps will appear. In our experiments, we use the radius defined based
on the average distance between the point and its neighbors (such as six nearest neighbors) to determine the size of the
local tangent plane disk.

4.2. Kernel width

The Gaussian kernel energies as defined in Eq. (1) and Eq. (4) depend on the choice of the fixed kernel width o, which
determines the final sampling. Once users specify the total number of particles, the proposed particle-based computation
can be automatically optimized without any control of particle population for different models (e.g., inserting or deleting
particles during the optimization).

The slope of the proposed energy peaks at distance of o and it is near zero at much smaller or much greater distances.
When o is chosen too small, kernels will nearly stop spreading because there is almost no overlapping/interaction between
Gaussian kernels, which may lead to aliasing and artifacts in the computed sampling. When o is chosen too large, nearby
kernels cannot repel each other and the resulting sampling pattern will be poor. In this work, o is set to be proportional to

the average “radius” of each kernel when they are uniformly distributed on the underlying surface Q: o = c,+/|2|/n, when

|2| represents the area of the surface  in the embedding space (i.e., isotropic, adaptive, and anisotropic space), n is the
number of particles, and ¢, is a constant coefficient. From our extensive experiments, we find out that the best value of ¢,
is around 0.3.

It is noted that when the isotropic sampling is computed, @ =  and it can be computed based on the area summation
of all the local tangent plane disks as discussed in Sec. 4.1 (with multiplying a constant o = 1.3). As for anisotropic and
adaptive samplings, given any input anisotropic/adaptive metric field M(x) (Q(x) = +/M(x)), the area of the embedded space
is: |2 = fQ detQ(x)ds. In this work, the input surfaces are represented by the dense point clouds, with metric defined on
each point. We need to approximate the surface area through point clouds. For each point p;, we use its nearest neighbors,
e.g., six neighbors p;,, ..., Pi;, to approximate a local disk area under the metric. The average distance between p; and its
neighbors in the embedded space is:

6
_ i)+ i
dpizéjz;nw«pi—pmn. )

Then, we use the above distance as the local disk radius to approximate the underlying local surface area covering by p; as:
= dp, . . . . . .

Sp; & om(%)z, where « is a constant (¢ = 1.3) in our experiments. After summing all the disk areas of the point clouds,
we can approximate the total area of the surface |Q| represented by the point clouds in the embedded space.

4.3. Particle optimization

During the particle optimization, with the summation of inter-particle energy defined in Eq. (6) and force defined in
Eq. (2), or Eq. (3), or Eq. (5), we use the L-BFGS algorithm Liu and Nocedal (1989) to optimize the particle positions. It is
a quasi-Newton method, which can quickly minimize the energy function of our particle-based sampling with less storage
requirement. The total energy and the gradient are updated at each iteration during the optimization. As we discussed
before, the gradient of particle x; can be considered as the force F; applied to itself. Furthermore, particles are supposed to
move on the tangent space Tg of the surface. So the gradient used by the L-BFGS optimizer needs to be projected onto Tq:

Filto =F; — [F; - n(x;)|In(x;), (8)

where n(x;) is the unit normal of particle x; on the point cloud surface.

In the L-BFGS optimization, the particles are constrained on the input point cloud surface . In each iteration, the up-
dated particle positions need to be projected to their nearest locations on the tangent plane disks, if they are out of the
boundary or out of the surface. It is noted that the particle optimization formulation is constructed by using a pushing
energy and force based on an Lp-Gaussian kernel, which can maximally and optimally push particles away within the
boundary constraint so as to cover the entire domain (point cloud surface), leading to automatically capture and reconstruct
the boundaries without requiring the user’s tagging as an extra input (such as CVT-based approaches need user’s interven-
tion). This optimization process is iterated until convergence by satisfying a specified stopping condition, e.g., the magnitude
of the gradient is smaller than a threshold or the maximal number of iterations. In our experiments of this work, we use
the number of iterations as the stopping condition and the detailed settings are given in Sec. 6.

Since no inter-thread communication/synchronization is required for each particle i (w.r.t. its inter-particle energy and
force), parallelization of the algorithm is easy and it can directly gain a factor nearly linear in the number of CPU cores. The
L-BFGS algorithm can be implemented in parallel of CPU cores by using HLBFGS package Liu (2010).
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Data: Point cloud surface € with metric M, the norm Ly, and the desired number of resampling points n
Result: The isotropic/anisotropic resampling X and surface mesh of Q
Initialize particle locations X;
while stopping condition not satisfied do
Build k-d tree for the current sampling X;
for each particle i in parallel do
Get particle i’s neighbor N(i) from k-d tree;
for each particle j € N(i) in parallel do
Compute EU using Eq. (1) or Eq. (4);
Compute FJ using Eq. (2) or Eq. (3) or Eq. (5);
end
Sum the total force F';
Project F' to the tangent space using Eq. (8);
end
Sum the total energy E in Eq. (6);
Run parallel L-BFGS using HLBFGS with E and F!, to get updated locations X;
Project X onto the tangent plane disks or the boundary of the point clouds in parallel;

end
Compute the surface mesh in parallel using Geogram from the computed X;

Algorithm 1: Parallel Particle Optimization and Surface Reconstruction.

4.4. Surface reconstruction

4.4.1. Triangular meshing

After the L, particle optimization, the final output triangular mesh is generated as the dual of restricted Voronoi dia-
gram (RVD) Yan et al. (2009). The parallel computation of RVD on point clouds is developed by using the method Boltcheva
and Lévy (2017). The idea is to compute the intersection between the 3D Voronoi diagram of the computed particles and
a set of disks centered at such particles. Once the RVD is obtained, we can easily compute its dual graph, i.e., restricted
Delaunay triangulation (RDT). The algorithm robustly computes the RVD using filtered geometric predicates and symbolic
perturbation to resolve degeneracies Lévy (2016). Generally, there is no guarantee that the dual mesh will not have inverted
elements. Whenever such an inverted element is detected, our implementation inserts additional points using the provably
terminating algorithm in Rouxel-Labbé et al. (2016), which is also used in Lévy and Bonneel (2012). In our implementation,
Geogram library ALICE/INRIA Nancy (2018) is used to generate isotropic and adaptive meshes (both in sequential and paral-
lel). When reconstructing anisotropic meshes, the dual of anisotropic Voronoi diagram (AVD) Du and Wang (2005) restricted
on point clouds is generated. We implement it by modifying the Geogram library in anisotropic case (both in sequential and
parallel).

4.4.2. Quad-dominant meshing

After the L, particle optimization, the quad-dominant mesh is extracted from the RDT (computed in the previous sub-
section) by merging pairs of triangles. Firstly, for every triangle A;, all its neighbors A; ; are found. The neighbors and itself
can construct the potential quads. All of those pairs are sorted by the angles at the corners of the so-obtained quads. Then,
the triangles are merged in the priority order, as suggested by Lévy and Liu (2010). Finally, we can apply the all-quad mesh
conversion technique Itoh and Shimada (2002) to clean all non-quad elements if necessary (which is beyond the scope of
this paper).

In conclusion, our parallel particle-based resampling and reconstruction can be summarized in Algorithm 1.

5. Evaluations
5.1. Triangular mesh quality

To measure the isotropic triangular mesh quality, we use the criteria as follows Frey and Borouchaki (1999). The quality
of a triangle is measured by G = 2\/5%, where S is the triangle area, p is its half-perimeter, and h is the length of its
longest edge. Gmin, Gqvg are the minimal and average qualities of all triangles. Opin, 6avg are the smallest and average
angles of the minimal angles of all triangles. %_30 is the percentage of triangles with their minimal angles smaller than
30 degrees. The angle histogram is also provided. It is noted that 6;,¢ should be 60 degrees if it is a regular triangle. G is
between 0 and 1, where 0 denotes a skinny triangle and 1 denotes a regular triangle.

In the anisotropic triangular meshing, for each triangle A in the final mesh, we use its approximated metric Q(Agpc) =
(Q(xq) + Q(xp) + Q(xc))/3 to affine-transform it from the original anisotropic space into the Euclidean space. After that, we
employ the previous isotropic triangular criteria, used in Zhong et al. (2013) and Fu et al. (2014)’s recent work, to evaluate
the quality of generated anisotropic triangular mesh.
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Fig. 2. Comparisons on uniform hexagonal resamplings and isotropic triangular meshes with CVT-based method Chen et al. (2018) and our particle-based
method on Cute Spocktopus, Hand Skeleton, Sapphos Head, and Stonehaus1 point cloud models.

5.2. Quad-dominant mesh quality

To measure the quad-dominant mesh quality, we use the criteria as follows: %5 is the percentage of the quads in all
mesh elements. Oyjn, Oqvg are the smallest and average angles of the minimal angles of all elements. %_3¢ is the percentage
of elements with their minimal angles smaller than 30 degrees. The angle histogram is given as well. It is noted that 6;y¢
should be 90 degrees if it is a regular quad.

6. Results

We develop our algorithms by using Microsoft Visual C++ 2015 in sequential implementation, and OpenMP 2.0 in the
parallel implementation. The mesh quality evaluations are implemented with Matlab R2015a. For the hardware platform,
the experiments are run on a desktop computer with Intel(R) Core(TM) i7-6850K Processor with 12 threads (6 cores), 15MB
Cache, 4.0 GHz, 32GB DDR4 RAM. Users provide the desired numbers of output samples for all the experiments.

6.1. Isotropic hexagonal resampling and mesh reconstruction
Comparison with CVT-based method: In this subsection, we first evaluate and compare our method with a recent state-

of-the-art resampling approach on point clouds, i.e.,, a CVT-based method Chen et al. (2018), which is most close to our
work. Fig. 2 shows the visualization comparison with the CVT-based method and our method (in L,-Gaussian kernel), on
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Table 1

Comparisons with CVT-based method Chen et al. (2018) and our particle-based method on statistics and timings for resampling and surface reconstruction.
Model Method #Points #Samples Gmin Gavg Omin Oavg % <300 Tk (Seq.) Twm (Seq.) Tg (Para.) Ty (Para.)
Cute Spocktopus CVT 182,351 30,000 0.38 0.88 17.24° 51.11° 0.01% 37.72s 0.48s - —
Cute Spocktopus Particle 182,351 30,000 0.49 0.89 25.47° 52.16° 0.008% 14.97 s 0.48s 3.07s 0.31s
Hand Skeleton CVT 269, 889 50, 000 0.05 0.87 2.02° 50.16° 0.2% 54.79s 0.70s — -
Hand Skeleton Particle 269, 889 50, 000 0.14 0.89 4.92° 51.91° 0.1% 24135 0.70 s 4.24s 0.50 s
Sapphos Head CVT 271,937 50, 000 0.44 0.88 19.74° 50.93° 0.022% 65.87s 0.74s - —
Sapphos Head Particle 271,937 50,000 0.50 0.89 23.43° 52.34° 0.007% 26.73 s 0.74s 5.53s 048 s
Stonehaus1 CVT 639, 842 80, 000 0.51 0.88 21.42° 51.07° 0.003% 133.36s 1.09s — -
Stonehaus1 Particle 639, 842 80, 000 0.42 0.90 27.22° 52.55° 0.003% 56.33s 1.09s 1043 s 0.67 s

Note: #Points: the number of points in the input point clouds. #Samples: the number of output samples. T (Seq.) and Ty (Para.): timings for resampling computations in
sequential and parallel designs with 35 iterations. Ty (Seq.) and Ty (Para.): timings for meshing computations in sequential and parallel designs. The best values are highlighted
in bold for each group. It is noted that the timings Ty (Seq.) for meshing computations on CVT and Particle methods are the same, since both of them use Geogram to compute
the final mesh.

several point clouds (e.g., Cute Spocktopus, Hand Skeleton, Sapphos Head, and Stonehausl models). The final mesh an-
gle histograms show that our method has more regular triangles (i.e., more number of angles close to 60°/more regular
hexagonal sampling patterns). In essence, the particle method is a physically-based system, which can lead to the force
equilibrium of particles in the nature, so as to generate the nice sampling and meshing results. Table 1 shows the statistics
and timings for resampling computation and surface reconstruction with CVT-based method Chen et al. (2018) and our
particle-based method. In quantitative, we can clearly see that our particle-based method has better sampling and mesh
quality (especially Gqvg, 6avg). Meanwhile, our method also has the faster convergence speed, since the CVT-based method
needs to compute Voronoi diagram iteratively during the energy optimization and particle-based method only needs to
compute the inter-particle energy and force in each iteration, which is much more efficient. Theoretically, the computa-
tional complexity of CVT-based method by using Lloyd’s algorithm is O (mlogn) for each iteration, where m is the number
of points in the original point clouds Secord (2002), Chen et al. (2018); while our particle-based method is O (nlogn) for
each iteration, where n is the number of output samples. Note that, m is always much greater than n in our point cloud
applications. We have developed and implemented our particle-based resampling and meshing computations both in se-
quential and parallel ways. Our method is several times faster than CVT-based method in the sequential design, not to
mention that in the parallel design, our method is even faster. In the implementation of CVT-based method, each RVD is ob-
tained by using the clipping method Lévy and Bonneel (2012), Chen et al. (2018) from Geogram library ALICE/INRIA Nancy
(2018).

Due to the page limit, there are some more uniform hexagonal resampling and isotropic triangular meshing results and
comparisons on different 3D point clouds given in Appendix.

Large-size point clouds: In order to demonstrate the scalability of the proposed method on large-size resampling and
meshing of point clouds, Fig. 3 shows the final results with resamplings ranging from 150K to 200K of the original point
clouds with more than 1M points. It is noted that our particle-based method is quite efficient on the large-size models, and
it takes 47.96 s (100 iterations and meshing) and 47.84 s (60 iterations and meshing) for Arch and Lucy models (in parallel
implementation), respectively. The final resampling and mesh quality are quite good as well.

6.2. Anisotropic and adaptive resampling and mesh reconstruction

Anisotropic metric on point clouds: For the anisotropic resampling and meshing on 3D point clouds, we use the fol-
lowing 3 x 3 metric tensor: M = [Vmin, Vinax, nldiag(1, (2—?)2, 0)[Vimin, Vmax, N]T, where Vpin and Vg are the directions of the
principal curvatures, n is the unit point normal. s; and s, are two user-specified stretching factors along principal curvature
directions. Since the resampling and meshing are computed by curvature-based metric tensor fields, we use the above met-
ric with s1 = «/Kpin and sy = +/Kmax, Where Kpin and Kpgx are the principal curvatures. We set small thresholds to preserve
both Kpin and Kpgx not vanishing. The principal curvatures and normals of original dense point clouds are estimated by
PCL library Rusu and Cousins (2011). Then, Laplacian smoothing is applied to both the stretching factors and directions, to
ensure smoothness of the input metric field on the point cloud surface. Z—f is defined as stretching ratio (> 1) in the metric
field M of the point clouds. The adaptive metrics are computed based on the mean curvatures of the original dense point
clouds as the density function.

Anisotropic results: Fig. 4 shows the visualization results of our method (in anisotropic L,-Gaussi