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Human action is a spatio-temporal motion sequence where strong inter-dependencies 
between the spatial geometry and temporal dynamics of motion exist. However, in 
existing literature for human action recognition from a video, there is a lack of synergy 
in investigating spatial geometry and temporal dynamics in a joint representation and 
embedding space. In this paper, we propose a dilated Silhouette Convolutional Network 
(SCN) for action recognition from a monocular video. We model the spatial geometric 
information of the moving human subject using silhouette boundary curves extracted 
from each frame of the motion video. The silhouette curves are stacked to form a 3D 
curve volume along the time axis and resampled to a 3D point cloud as a unified spatio-
temporal representation of the video action. With the dilated silhouette convolution, the 
SCN is able to learn co-occurrence features from low-level geometric shape boundaries 
and their temporal dynamics jointly, and construct a unified convolutional embedding 
space, where the spatial and temporal properties are integrated effectively. The geometry-
based SCN significantly improves the discrimination of learned features from the shape 
motions. Experiment results on the JHMDB, HMDB, and UCF101 datasets demonstrate the 
effectiveness and superiority of our proposed representation and deep learning method.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Human action recognition has a wide range of applications in computer graphics, computer vision, and human-computer 
interaction, e.g., video games, sport analysis, public safety, virtual and augmented reality, etc. Many methods have been 
proposed to tackle this problem, such as Simonyan and Zisserman (2014); Ji et al. (2012); Carreira and Zisserman (2017). 
With the availability of low-cost depth cameras and pose estimation technologies (Shotton et al., 2011; Yub Jung et al., 
2015), skeleton-based action recognition has provided a viable solution (Du et al., 2015; Song et al., 2017; Yan et al., 2018), 
which is more robust to variations in camera locations, human appearances, and environmental backgrounds. In addition, 
the computational cost of skeleton data is much lower due to its conciseness. However, the use of specialized 3D depth 
cameras limits its broad application and wide penetration to real-world applications for common users.

Therefore, monocular video-based action recognition continues to attract more research attention (Wang et al., 2003; 
Chaquet et al., 2013; Vishwakarma and Agrawal, 2013; Hassner, 2013), and recently, many deep learning-based methods 
have been proposed to tackle the problem (Choutas et al., 2018; Yan et al., 2019). To develop an effective deep neural 

* Corresponding author.
E-mail addresses: mhua23@cranbrook.edu (M. Hua), gaomqgs@gmail.com (M. Gao), zichunzhong@wayne.edu (Z. Zhong).
https://doi.org/10.1016/j.cagd.2021.101965
0167-8396/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cagd.2021.101965
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cagd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cagd.2021.101965&domain=pdf
mailto:mhua23@cranbrook.edu
mailto:gaomqgs@gmail.com
mailto:zichunzhong@wayne.edu
https://doi.org/10.1016/j.cagd.2021.101965


M. Hua, M. Gao and Z. Zhong Computer Aided Geometric Design 85 (2021) 101965
network method for video action recognition, two aspects need to be considered: (1) the spatial and temporal represen-
tation of video actions; and (2) the corresponding deep neural network to extract distinctive spatio-temporal features for 
action classification. But, in the existing literature, there remains a lack of synergy in investigating the spatial geometry and 
temporal dynamics in a joint embedding space.

Nowadays, there are some methods starting to improve along this direction. For instance, PoTion (Choutas et al., 2018) 
uses human joints to capture spatial information and probability maps to temporally aggregate the pose motion representa-
tion, which is coded by the colorization scheme. The Pose-Action 3D Machine (PA3D) (Yan et al., 2019) method consists of 
three semantic modules, i.e., spatial pose CNN, temporal pose convolution, and action CNN. It can effectively encode multi-
ple pose modalities within a unified 3D framework and, consequently, learn spatio-temporal pose representations for action 
recognition. Recently, Yan et al. (2018) used a spatio-temporal graph representation of skeleton sequences and employed a 
graph convolutional network (GCN) for action recognition. However, the information transmission between two correlated 
joints is not effective if the joints are not directly connected. To alleviate this, Shi et al. (2019) used a directed graph to 
represent the skeleton and learned adaptive graph structures during training, which allows actional correlated joints to 
be connected directly. However, these aforementioned methods rely on high-level semantic inputs (i.e., joints and skeletal 
poses) and the extraction of these high-level semantics itself is error-prone. That is to say, the learning procedure from 
the original input (pixels) to final semantic analysis (action labels) through the estimated joints/skeletons becomes quite 
indirect and can be affected by the pose estimation which may not be optimal. On the other side, the recent, very success-
ful, I3D method (Carreira and Zisserman, 2017) takes pixels and optical flows as inputs, which are low-level feature inputs. 
The pixel-level information and their dynamics is integrated through a two-stream integration. Its action recognition per-
formance on the benchmark datasets shows better results partly because the process of learning directly from the low-level 
features may be more effective. This inspires us to rethink the use of geometry-based convolution for human action recog-
nition. It may be better to use low-level geometric representations as inputs instead of advanced semantic representations 
from extracted human joints and skeletons.

Hence, we propose dilated Silhouette Convolutional Network (SCN) for action recognition from a monocular video. More 
specifically, we model the spatial geometric information of the moving human subject using silhouette boundary curves 
extracted from each frame of the motion video, which are more robustly extracted than joints and skeletal poses. The 
silhouette curves are stacked to form a 3D curve volume along the time axis, and resampled to a 3D point cloud as a 
spatio-temporal representation of the video action. Action is a spatio-temporal motion sequence that involves rich geometric 
and dynamic properties hidden in the spatial configuration and temporal dynamics. Such a process is able to represent the 
dynamic and geometric properties with low-level features and integrate them effectively for a better understanding of the 
spatio-temporal evolutions of video action. Subsequently, a novel SCN framework is proposed to explore the co-occurrence 
features among silhouettes along time as well as inter-dependencies between the geometric and dynamic properties. Our 
main contributions can be summarized as follows:

• We present a stacked silhouette point representation to learn co-occurrence features from silhouettes and temporal 
dynamics jointly, and map them onto a unified convolutional space for the effective integration;

• We introduce a dilated silhouette convolutional network to construct a unified convolutional embedding space, where 
low-level geometric and dynamic properties can be integrated effectively to explore their inter-dependencies and en-
hance the discrimination of learned features;

• The explicit geometry-based SCN significantly improves the discrimination of learned features from shape motions and 
outperforms similar state-of-the-art approaches on the three benchmark datasets of human actions with low compu-
tational costs. Combined with I3D, it outperforms all other state-of-the-art methods because its complementarity to 
pixel-based methods.

2. Related work

In this section, we review the most related works regarding representation of video action and recent deep neural 
networks which have been used for video action recognition.

2.1. Representation of video action

In video-based action recognition, human pose is a discriminative cue for human action recognition. There exists a vast 
literature on action recognition from 3D skeleton data. Most of these approaches need to train a recurrent neural network 
(RNN) on the coordinates of human joints. However, this kind of methods requires the knowledge of the 3D coordinates of 
every single joint of the human in each frame. This is not generalizable to videos in the wild, which comprise of occlusions, 
truncations, and multiple humans in complicated scenarios. First attempts to use 2D poses were based on hand-crafted 
features (Jhuang et al., 2013; Wang et al., 2013; Nie et al., 2015). For instance, Jhuang et al. (2013) encoded the relative 
position and motion of joints with respect to the human center and scale. Wang et al. (2013) proposed to group joints on 
body parts (e.g. left arm) and used a bag-of-words to represent a sequence of poses. Nie et al. (2015) used a similar strategy 
leveraging a hierarchy of human body parts. However, these representations have several limitations: (a) they require pose 
tracking across the video, (b) features are hand-crafted, and (c) they are not robust to occlusion and truncation.
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There also exists research work that relies on silhouettes of human subjects for action representation. Bobick and 
Davis (2001) proposed a technique that employs silhouettes to generate motion energy images (MEI), to detect where the 
movement occurs, and motion history images (MHI), to show how the object moves. Gorelick et al. (2007) accumulated sil-
houettes into three-dimensional representations and employed Poisson equation to extract features of human actions. More 
recently, Jahagirdar and Nagmode (2018) proposed the embedded histogram of oriented gradients and principal component 
analysis to obtain feature descriptors on silhouettes. These methods are also hand-crafted and are not generalizable to large 
datasets due to limited feature distinctiveness.

Recently, PoTion (Choutas et al., 2018) introduces a new representation that encodes the movement of some semantic 
keypoints. Specifically, they first ran a human pose estimator and extracted heatmaps for the human joints in each frame. 
They obtained the PoTion representation by temporally aggregating these probability maps. This is achieved by colorizing 
each of them, depending on the relative time of the frames in the video clip, and summing them. The network performance 
has been improved by adding the above-mentioned PoTion streams into a two-stream network. PA3D (Yan et al., 2019) 
provides a seamless workflow to encode spatio-temporal pose representations for video action recognition. Specifically, 
PA3D consists of three semantic modules, i.e., spatial pose CNN, temporal pose convolution, and action CNN. First, spatial 
pose CNN extracts different modalities of pose heatmaps (i.e., joints, part affinity fields, and convolutional features) from 
wild videos. Second, temporal pose convolution adaptively aggregates spatial pose heatmaps over frames, which generates 
a spatio-temporal pose representation for each pose modality. Finally, action CNN takes the learned pose representation as 
input to recognize human actions. Zhang et al. (2019) presented two end-to-end view adaptive neural networks, VA-RNN 
and VA-CNN, for human action recognition from skeletal data. For each network, a novel view adaptation module learns 
and determines the most suitable observation viewpoints and transforms the skeletons to those viewpoints for end-to-end 
recognition with a main classification network. These methods rely on high-level semantic inputs (i.e., joints in these cases) 
from other work, and the extraction of these high-level semantics is error-prone. The learning procedure from the original 
input (pixels) to final semantic analysis (action labels) through the estimated joints and skeletons becomes quite indirect 
and can be affected by the pose estimation, which is used as a learning stepping stone. Different from these methods, we 
propose to use temporal evolving silhouettes, which are more robustly obtained, and to define them into a spatio-temporal 
representation of video action, where the geometric and dynamic properties can be jointly learned through convolutions.

2.2. Deep neural networks for action recognition

Recently, deep learning methods have shown good performance in video action recognition. Both 2D and 3D CNN-
based methods are widely used in video action recognition. 2D CNNs (Simonyan and Zisserman, 2014; Christoph and Pinz, 
2016; Wang et al., 2018a) were the first to be used but had limitations due to their inability to learn spatio-temporal 
representations of complex actions. To address this limitation, 3D CNNs, such as model inflation (e.g., I3D) (Carreira and 
Zisserman, 2017), spatio-temporal relations (Wang et al., 2018b; Wang and Gupta, 2018), factorization (Xie et al., 2017; 
Tran et al., 2018), etc., have been applied. RNN-based methods (Du et al., 2015; Donahue et al., 2015; Du et al., 2017) focus 
on the characteristics of human behavior, introduce the co-occurrence of nodes in behavior into the network, and use it as a 
constraint of network parameter learning to optimize the performance of human action recognition. Human action is often 
closely related to the specific set of joints of the skeleton and the interaction of the joints in the set. However, RNN-based 
methods do not make full use of the optical flow and RGB information, which contain important action information. GCN-
based methods (Yan et al., 2018; Shi et al., 2019) for action recognition construct a spatio-temporal graph from a sequence 
of 3D skeleton points. Skeleton-based data can be obtained from motion capture devices and pose estimation algorithms. 
Usually, the data is a sequence of frames, each with a set of joint coordinates. Given the serialized coordinates in 2D or 3D 
form, a spatio-temporal graph can be constructed with joints (as nodes), human body natural connection, and time domain 
connection (as edges). Among the methods mentioned above, I3D achieves the highest accuracy. However, I3D only works 
on implicit representation (i.e., pixels) of shape motion (human motion in this paper). It does not take advantage of the 
explicit geometric shape motion information, and requires a large set of training data. Different from these methods, the 
interactions of silhouette points in our method are not constrained by connectivities due to our dilated convolution scheme 
used in the network, whose dynamic and geometric properties can be integrated in a unified convolutional embedding 
space for the further exploration.

3. Dilated silhouette convolutional network

Our approach for video action recognition is based on a novel silhouette point-based representation and a correspond-
ingly designed dilated silhouette convolutional network. The details of our approach are explained as follows.

3.1. Stacked silhouette point representation

To recognize human actions involved in monocular RGB videos effectively, we need to exploit both the spatial and 
temporal information contained in the videos. Therefore, we propose a novel stacked silhouette point representation to 
express the moving human subject across different frames of a given video. We first extract silhouette boundary curves of 
the moving human subject for each frame of a given video using a modified Mask R-CNN (He et al., 2017), which only 
3
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Fig. 1. Illustration of video frames and their corresponding silhouette boundary curves. The silhouette boundary curves of the moving human subject are 
extracted from each frame using a modified Mask R-CNN (He et al., 2017), which only detects human subjects.

Fig. 2. Stacking silhouette boundaries along the time dimension based on their centers of gravity and resulting in a 3D curve volume. The coordinate of 
each point is denoted as (x, y, z), where (x, y) represents the point position in the corresponding frame, and z represents the time step of the frame.

detects human subjects. Compared to extracting joints and skeletons through pose estimation, silhouettes are more reliably 
extracted since they are simple separations of the foreground and background without high-level semantic information. 
Since Mask R-CNN is only used for human silhouette segmentation in our approach, it is very fast to process videos. In our 
experiments, we have tested the modified Mask R-CNN, and it takes around 25 ms ∼ 50 ms to process a single frame, which 
is fast enough to meet the needs of real application scenarios. Fig. 1 shows a sequence of extracted silhouette boundary 
curves of a running person.

After extracting silhouette curves of the moving human subject from each frame, we stack the obtained silhouette curves 
along the time dimension based on their centers of gravity, which results in a 3D curve volume along the time axis (as 
illustrated in Fig. 2). In order to tackle the problem of variation in video length and obtain a unified representation of 
different videos, the 3D curve volume is then resampled to a 3D point cloud with a fixed number of points. The coordinate 
4
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Fig. 3. Resampling a stacked silhouette point representation to a standard sampling rate using the Farthest Point Sampling algorithm (Moenning and 
Dodgson, 2003).

of each point is denoted as (x, y, z), where (x, y) represents the point position in the corresponding frame, and z represents 
the time step of the frame. In our method, the Farthest Point Sampling (FPS) algorithm (Moenning and Dodgson, 2003; Qi 
et al., 2017) is adopted for downsampling. Compared with random sampling, FPS can get better coverage of the entire point 
set. The implementation of FPS algorithm is described as follows:

Step 1: Given a point set of n points, i.e., N = {p1, p2, ..., pn}, set the number of centroids to be selected as m;
Step 2: Randomly select a point pi as the starting point, and add this point to the selected-set B , i.e., B = {pi};
Step 3: Calculate the distances between pi and each of the remaining n − 1 points, find the point p j with the largest 

distance and add p j to set B , i.e., B = {pi, p j};
Step 4: Calculate the distances of the remaining n − 2 points to each point in set B . For each of the remaining n − 2

points, select the shortest distance as its distance to the set B . Find the point pk with the largest distance among n − 2
point-to-set distances and add pk to set B , i.e., B = {pi, p j, pk};

Step 5: Repeat the step of selecting points until m points are selected.
Fig. 3 shows an example of stacked silhouette point representation before and after resampling.

3.2. Dilated silhouette convolutional network design

Compared to 2D images, the stacked silhouette point representation is a point cloud which is more flexible in terms 
of shape and information carried. For traditional 2D convolution on images, convolutional kernels only operate on a small 
local area each time. In each local area, the relative position of each pixel is always fixed, which makes the application of 
2D discrete convolutions very straightforward. For convolution on irregular 3D point clouds, however, the relative position 
of each point is not fixed and the traditional 2D convolution cannot be applied directly. And since the points in a 3D point 
cloud are unordered, the convolution operation on the point cloud should be invariant to input point permutations. In this 
section, we describe our dilated silhouette convolutional network which are able to learn from the stacked silhouette point 
representations for classification.

3.2.1. Dilated silhouette convolution computation
For each local region in the input stacked silhouette point representation, i.e., point cloud set, the coordinates of all 

points in the local region need to be converted from global coordinates to local coordinates. To this end, we use the selected 
centroid point in the local region and then subtract the coordinate of the centroid from the coordinates of all the remaining 
points to obtain the respective local coordinates. Through the coordinate transformation operation, each local region can be 
regarded as a neighborhood that composed of an origin point P0 and many other points. The point cloud convolution will 
perform on these neighborhoods.

The input of the entire network contains two parts. Besides the local coordinates of the points, each point also has an 
unshared density coefficient, which is obtained by calculating its point density in its own local region. The main reason for 
introducing the density coefficient is to solve the problem of uneven sampling across the constructed silhouette point cloud. 
The convolution operation is essentially a weighted sum operation; thus, the feature of a point is not only determined by 
itself, but also the neighboring points. If a point is surrounded by too many other points, there will be a relatively large 
weight of this point in the extracted feature map. Intuitively, denser sampled areas will have larger weights in the extracted 
feature map, which is not desirable. In order to tackle this problem, we first calculate the density coefficient of each point 
in an offline manner, which is then used to adjust the input during the training process, thereby avoiding the impact of 
uneven sampling. Finally, the outputs of the coordinate input module and the density input module are multiplied to extract 
the feature of the current point.
5
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Fig. 4. Dilated silhouette convolution computed in a local neighborhood region, N .

In mathematics, convolution operation is defined as Eq. (1) for functions f (x) and g(x):

( f ∗ g)(x) =
∫∫

γ ∈R3

f (γ )g(x + γ )dγ . (1)

For dilated silhouette convolution in this paper, the continuous convolution operation in a local neighborhood, N , is 
expressed as follows:

Dconv(W , F )xyz =
∫∫∫

(δx,δy ,δz)∈N

W (δx, δy, δz)F (x + δx, y + δy, T (z + δz))dδxdδydδz, (2)

where W (x, y, z) denotes a trainable weight of point (x, y, z), F is the feature of the point, and T (·) denotes dilated con-
volution on the z axis in order to obtain a larger temporal receptive field, i.e., we adopt the dilated convolution module on 
the temporal dimension, the z axis.

Inspired by Wu et al. (2019), we use a density function, S(·), to combat the point sampling density variance. The density 
function measures the reciprocal of the point density at the local region. The final discrete dilated convolution operation in 
our network is expressed as follows:

Dconv(S, W , F )xyz =
∑

(δx,δy ,δz)∈N

S(δx, δy, δz)W (δx, δy, δz)F (x + δx, y + δy, T (z + δz)). (3)

In order to obtain optimal convolution kernel function, W , and density kernel function, S , to compute the dilated point 
convolutions, we implement it with multilayer perceptron (MLP), similar to Wu et al. (2019). The weights of all the MLP 
modules are shared in order to be invariant to point permutations. The final network architecture is composed of two 
branches, one branch takes the local coordinates as input while the other branch takes the density values as input. Each 
MLP module consists of dilations and two 1 × 1 convolutional layers. Fig. 4 shows the overall network architecture.

As shown in Fig. 4, the upper branch (part a) takes the local coordinates of points as input and learns a weight W for the 
current point through a MLP module. The bottom branch (part b) takes the density values as input, which are calculated by 
kernel density estimation (KDE) beforehand. Since the larger the KDE value, the heavier the weight in the resulted feature 
map, so we use the reciprocal of KDE value as input in order to decrease the weights of dense regions in the feature map. 
The output of this branch is a vector of density coefficients S . By multiplying weight coefficients W and density coefficients 
S , the feature map is adjusted to reduce the influence of uneven sampling. T (K ) denotes the dilation of the point set K . Cin

and Cout are the numbers of channels for the input and output features, respectively, while cin and cout are the indices for 
the cin-th channel for input feature and the cout -th channel for output feature. The final output can be expressed as follows:

Fout =
T (K )∑
k=1

Cin∑
cin=1

S(k)W (k, cin)F (k, cin). (4)

3.2.2. Dilated silhouette convolutional network architecture
Our proposed SCN architecture follows a hierarchical structure design consisting of a set of convolution layers. Each 

convolution layer consists of several operations performed sequentially and produces a subset of input points with newly 
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Fig. 5. SCN feature encoder with the stacked silhouette point representation as input. The downsampling is conducted using Farthest Point Sampling. The 
output is a feature vector.

Fig. 6. Slow-to-Fast SCN architecture.

learned features. Firstly, we downsample the silhouette point representation using Farthest Point Sampling algorithm (Moen-
ning and Dodgson, 2003) to extract centroids randomly distributed on the silhouette point cloud of each action. Secondly, 
K-NN extracts a local neighborhood region for each centroid. Finally, we apply a set of dilated silhouette point convolutions 
in the local neighborhood regions to produce new feature vectors, which uniquely describe each local region.

Given the 3D stacked silhouette point representation of a video action, our proposed end-to-end SCN network, as shown 
in Fig. 5, is able to encode a feature for classification of actions. The encoder, i.e., SCN, extracts features from each local 
neighborhood region independently inside every convolution layer and concatenates them at the end to further feedforward 
to extract high-level features. In this work, the SCN architecture contains two dilated point convolution layers and each in-
cludes both temporal dilations of 1 and 2. We use two dilations per layer because it gives us excellent experimental results 
for our application. It can be easily extended to more than two dilations per layer, if necessary. Each dilated convolution 
layer is followed by a batch normalization (BN) and a rectified linear unit (ReLU). Then, the aggregated features are propa-
gated to the next layer. After the two dilated convolution layers, the last layer in the encoder performs convolutions with 
kernel sizes 1 × 1 followed by BN and ReLU layers. Finally, the aggregated high-level features from the encoder are fed out 
for classification.

3.2.3. Slow-to-Fast SCN
Note that, the dilated silhouette point convolution only performs dilation operations based on randomly selected centroid 

points in the original sampling of the stacked silhouette point representation. To further expand the temporal receptive field 
globally, we resample the stacked silhouette point representation to three temporal scales, Sslow = {s0, s1, s2, s3, · · · , sn}, 
S f aster = {s0, s2, s4, · · · }, and S f astest = {s0, s3, s6, · · · }, where si denotes the silhouette points at Frame ti . The three sets of 
silhouette point representations are input to SCNs, respectively, as shown in Fig. 6. The output features from each SCN are 
concatenated to a single feature vector and fed to the set of fully-connected layers with integrated dropout and ReLU layers 
to calculate probability of each class. The output size of the classification network is equal to the number of action classes 
in the dataset.

4. Experiments

We conduct extensive experiments including training and testing on the HMDB, JHMDB, and UCF101 datasets using their 
standard protocols. It is noted that for comparison experiments, the best results in the tables are shown in bold font. All 
models in this paper are trained on a single NVIDIA Titan Xp GPU with 12 GB GDDR5X. The source code will be publicly 
available soon.

4.1. Datasets and settings

The HMDB dataset contains 6766 video clips from 51 classes, such as brushing hair, sitting, drinking, etc. The JHMDB 
dataset is a subset of HMDB with 928 short videos from 21 classes. A number of frames in the JHMDB dataset are annotated 
with a puppet model that is fitted to the actor, i.e., this results in an approximative 2D ground-truth pose, and those frames 
have handcrafted masks of the silhouettes of actions. The UCF101 dataset is much larger than HMDB and JHMDB. It consists 
7
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of around 13K videos from 101 action classes, including playing a variety of sports and instruments. HMDB and UCF101 
have no handcrafted masks.

JHMDB, HMDB, and UCF101 have provided three training/testing splits. Following the standard protocols, we train and 
test using the provided splits. In a dataset, each video has only a single label, and we test mean classification accuracy (in 
percentage) of the testing sets, i.e., the ratio of videos in a given class that is correctly classified averaged over all classes in 
the dataset. For each experimentation on one dataset, we run the experiment three times using the three training/testing 
splits of the dataset, respectively, and report the average accuracy of the three experiments as the final result of our SCN on 
the dataset.

4.2. Implementation details and time performance

Recently, Carreira and Zisserman (2017) have highlighted the importance of pre-training for action recognition with the 
Kinetics dataset. In contrast, our network, which takes the action point cloud as input, can be simply trained from scratch 
without pre-train. In our experiments, we set the number of sampling points in the stacked silhouette point representation 
to 4096. Thus, each video action is represented as a point cloud of 4096 points. We have tested different numbers of 
sampling points used in this representation. The total number of points, 4096, is a good sampling rate considering both 
accuracy and computational cost. Significantly lower than 4096 points will cause information loss, hence, a lower accuracy. 
Greater than that does not increase the accuracy. Certainly, this also depends on the action datasets. If SCN is used for 
fine-grained action recognitions, the sampling rate for the stacked silhouette point representation needs to be higher. The 
initial learning rate is set to 0.001, and reduced to 0.00075 in the middle and 0.0005 towards the end. The weight decay 
that we use is 0.0001, the momentum is 0.8, the batch size is 64, and the gamma is 0.1. During training, we drop activations 
with a probability of 0.3 after each convolutional layer. We optimize the network using the Adam optimization method. The 
combination of I3D and our SCN is through equal weighted summation of their respective prediction outputs. The simple 
combination strategy is to prevent interference with each model’s capability and their intrinsic complementarity. It can 
demonstrate how much different models are truly complementary to each other when not learned from each other during 
training.

Using HMDB training as an example, the typical length of video clips of human actions in the datasets is about 30 
seconds. For each video clip of a human action, we evenly extract around 250 frames. We use a modified Mask R-CNN 
(which detects humans only) to process each frame to obtain a human silhouette with the time cost of 25 ms ∼ 50 ms 
depending on the size of the human in the frame. For training, this process is a preprocessing step and only conducted 
once for each dataset. Once we have pre-computed our stacked silhouette point representation for every video clip of the 
dataset, it takes approximatively 3 hours to train our network on the HMDB dataset. As for testing, each stacked silhouette 
point representation can be classified within 1.5 seconds. With the help of the sparse representation of the point cloud on 
the shape silhouette (i.e., a 3D curve volume) resulting in a lightweight computation, our video classification training can 
be done in a few hours on a single GPU (e.g., a single Nvidia Titan Xp in our case) without any pre-training. However, all 
other state-of-the-art approaches (e.g., using a 3D image volume representation) often require multiple days of training on 
several GPU cards after a pre-training stage.

4.3. Comparison with state-of-the-art

We compare the performance of our method with a number of state-of-the-art methods on video action recognition 
using JHMDB, HMDB, and UCF101 datasets. The numerical evaluations are shown in Table 1. It is clearly seen that a com-
bination of our SCN with I3D significantly outperforms all other recent approaches. Overall, we outperform all existing 
approaches on all datasets, including methods which leverage pose or capture long-term motion. On the JHMDB dataset, we 
significantly outperform P-CNN (Chéron et al., 2015), which leverages pose estimation to pool CNN features. We obtain a 
significantly higher accuracy (i.e., 86.3%) than the classification performance reported by action localization approaches. On 
the HMDB dataset, we obtain 85.1% mean classification accuracy, performing better than I3D by 5.4% and better than other 
methods by more than 15%. On the UCF101 dataset, we also reach a state-of-the-art accuracy with 98.3%, 0.3% above I3D 
alone.

Note that, each method uses different modalities and pre-training strategies. Here, we would like to emphasize that our 
work is within the same category of PoTion (Choutas et al., 2018), PA3D (Yan et al., 2019), and DD-Net (Zhang et al., 2019) 
(i.e., using explicit 2D frame geometry-based representations). However, our method based on silhouettes outperforms their 
method based on joints or skeletons. In summary, on smaller datasets (e.g., HMDB) geometry-based (model-driven) SCN per-
forms better than pixel-based (data-driven) I3D, while I3D performs better than SCN on large datasets (e.g., UCF101). When 
combining implicit pixel-based I3D and explicit geometry-based SCN, the performance becomes preeminent, which indicates 
that our geometry-based representation and convolution best complements pixel-based representation and convolution.

In Table 1, we also evaluate the performance of different methods combined with I3D. Our method (I3D’+SCN) still 
outperforms I3D+PoTion (Choutas et al., 2018) and I3D+PA3D (Yan et al., 2019). I3D’ denotes our own implementation 
of I3D. Note that geometry-based representation and convolution complement pixel-based representation and convolution 
as indicated by PoTion, PA3D, and our method. But when our geometry-based method, SCN, is combined with I3D, it 
outperforms all the others.
8
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Table 1
Comparison with state-of-the-art methods with mean per-class accuracy on the JHMDB, HMDB, and 
UCF101 datasets averaged over the three splits. I3D’ denotes results which we have reproduced. Our 
work is within the same category of PoTion, PA3D, DD-Net, etc. (i.e., using explicit 2D frame geom-
etry based representations). However, our method based on silhouettes outperforms their methods 
based on joints or skeletons. On smaller datasets (e.g., HMDB) geometry-based SCN performs better 
than pixel-based I3D while I3D performs better than SCN on large datasets (e.g., UCF101) (but I3D 
requires a pre-train Deng et al. (2009)). Geometry-based representation and convolution comple-
ment pixel-based representation and convolution as indicated by PoTion, PA3D, and our method, 
SCN. When combining implicit pixel-based I3D and our explicit geometry-based SCN, the perfor-
mance becomes the best, which indicates that our geometry-based representation and convolution 
best complements pixel-based representation and convolution.

Methods JHMDB HMDB UCF101

2D geometry-based methods
P-CNN (Chéron et al., 2015) 61.1 – –
Action Tubes (Gkioxari and Malik, 2015) 62.5 – –
PoTion (Choutas et al., 2018) 57.0 43.7 65.2
PA3D (Yan et al., 2019) 69.5 55.3 –
DD-Net (Zhang et al., 2019) 77.2 – –

SCN (Ours) 77.8 82.1 69.6

Pixel-based methods
MR Two-Sream R-CNN (Peng and Schmid, 2016) 71.1 – –
Attention Pooling (Girdhar and Ramanan, 2017) – 52.2 –
Res3D (Tran et al., 2017) – 54.9 85.8
Two-Stream (Simonyan and Zisserman, 2014) – 59.4 88.0
IDT (Wang and Schmid, 2013) – 61.7 86.4
Dynamic Image Networks (Bilen et al., 2016) – 65.2 89.1
C3D (3 nets) (Tran et al., 2015)+IDT – – 90.4
LatticeLSTM (Sun et al., 2017) – 66.2 93.5
Two-Stream Fusion (Feichtenhofer et al., 2016)+IDT – 69.2 93.5
TSN (Wang et al., 2016) – 69.4 94.2
Spatio-Temporal ResNet (Christoph and Pinz, 2016)+IDT – 70.3 94.6
I3D (Carreira and Zisserman, 2017) – 80.7 98.0
Spatiotemporal Fusion (Zhou et al., 2020) – – 96.5
TEA (Li et al., 2020) – 73.3 96.9

2D geometry and pixel combined
Chained (Pose+RGB+Flow) (Zolfaghari et al., 2017) 76.1 69.7 91.1
I3D+PoTion (Choutas et al., 2018) 85.5 80.9 98.2
I3D+PA3D (Yan et al., 2019) – 82.1 –

I3D’+SCN (Ours) 86.3 85.1 98.3

Fig. 7. Visualization of action recognition accuracy difference on each class by I3D’ and I3D’+SCN methods on the JHMDB dataset.

In order to further analyze the gains obtained by our SCN network, we provide the detailed statistics of the difference in 
action recognition accuracy on each class in the results obtained by I3D’ and I3D’+SCN on the JHMDB dataset. The specific 
differences are visualized in Fig. 7. It is worth noting that in JHMDB dataset, since some action classes are quite different 
and distinguishable from other classes, such as running, kicking a ball, pushing, etc., these classes are perfectly classified, 
which is impossible to further improve upon using our I3D’+SCN. The categories that have been significantly improved upon 
are mainly in the classes that have a great correlation between posture and movement patterns, such as sitting, clapping, 
9
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Table 2
Model analysis on w/o and w/ Slow-to-Fast architecture.

Datasets w/o Slow-to-Fast w/ Slow-to-Fast

JHMDB 76.9 77.8
HMDB 81.4 82.1
UCF101 68.1 69.6

Table 3
Model analysis on w/o and w/ dilation.

Datasets w/o dilation w/ dilation

JHMDB 76.4 77.8
HMDB 81.0 82.1
UCF101 67.5 69.6

Table 4
Model analysis on w/o and w/ using manual mask on 
JHMDB dataset.

Datasets w/ manual mask w/o manual mask

JHMDB 77.4 77.8

waving, catching, jumping, etc. However, the action classes SCN preformed poorly on are usually very similar in posture and 
movement, such as throwing, shooting a ball, and shooting a gun. For this type of movements, the appearance of movements 
from images / videos is more important than the postures (silhouettes); so, our SCN does not perform very well on them.

4.4. Model analysis and ablation study

Based on the characteristics of the action silhouette point cloud and video action recognition, we propose a Slow-to-Fast 
structure to expand the receptive field of the convolution kernel in order to obtain better action recognition results. The 
experiments are carried out by w/o and w/ a Slow-to-Fast structure, respectively. In Table 2, it shows that when we use the 
Slow-to-Fast architecture in our network, the accuracy values of three datasets improve, and the improvement on UCF101 
is much higher than those on JHMDB and HMDB. This is due to the characteristics of the datasets. The average video length 
of the UCF101 dataset is about 60 seconds, while the average video length of the HMDB dataset is only about 30 seconds, 
meaning that the number of silhouette curve sequences extracted from the UCF101 dataset is doubled those extracted from 
the HMDB dataset. Due to the longer silhouette curve sequence, the performance of UCF101 dataset is better with the 
help of the proposed Slow-to-Fast architecture since the receptive field in the neural network is expanded. According to 
improvements on the three datasets, the slow-to-fast structure which we proposed is effective, and the action recognition 
performance can be greatly improved by expanding the receptive field. The proposed dilation is used to further expand 
the receptive field of the convolution without omitting frames from the stacked silhouette point representation inputs. The 
experiments are carried out by w/o and w/ dilations, respectively. In Table 3, it shows that when we use the dilations in our 
network, the low-level geometric and dynamic properties can be integrated effectively to explore their inter-dependencies, 
hence, enhancing the discrimination of learned features to improve the recognition accuracy values in the three datasets.

In the three experiment datasets, UCF101 and HMDB do not have manual mask data, but JHMDB has provided manual 
mask data. In this case, we conduct a comparison experiment on the JHMDB dataset to analyze the influence of the manually 
annotated mask data on action recognition performance of our proposed network. In Table 4, it shows that our network 
performs robustly on with and without manual masks in the JHMDB dataset. The masks are obtained by the Mask R-CNN 
method (He et al., 2017) when there is no manual mask on JHMDB dataset. It is interesting that our network performance 
drops slightly by using the manual masks. One possible reason is the action silhouette curves extracted by the deep neural 
network pays more attention to the low-level geometric features of actions, which is more suitable as the input of our 
neural network than the manual annotation.

5. Conclusion

In this work, we have presented a dilated Silhouette Convolutional Network (SCN) for human action recognition from a 
monocular video. It can effectively capture the spatio-temporal evolutions of human silhouette shapes. The spatial geometry 
and temporal dynamics of the moving human subject are embedded in a 3D silhouette point cloud as a joint spatial-
temporal representation of video action. A novel silhouette convolutional network is presented to explore the co-occurrence 
features among silhouettes along the time dimension as well as inter-dependencies between the geometric and dynamic 
properties. SCN significantly improves the discrimination of learned features and outperforms similar state-of-the-art ap-
proaches on the three benchmark datasets.
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The SCN has certain limitations too. Currently, the silhouettes are extracted as boundaries that separate the background 
and foreground. For certain actions, the extracted silhouettes may not contain enough discriminative information due to 
self-occlusion. For example, if the action of waving hands is inside the body contour, the current silhouettes extracted by 
Mask R-CNN cannot capture the action information; therefore, it results in a misclassification. This can be improved by 
extracting human movement silhouettes including internal parts as well. The potential improvement of SCN in occluded or 
self-occluded situations will be investigated in our future work.
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