
34

TCB-spline-based Image Vectorization

HAIKUAN ZHU, JUAN CAO, YANYANG XIAO, and ZHONGGUI CHEN, Xiamen University, China

ZICHUN ZHONG, Wayne State University, USA

YONGJIE JESSICA ZHANG, Carnegie Mellon University, USA

Vector image representation methods that can faithfully reconstruct ob-

jects and color variations in a raster image are desired in many practical ap-

plications. This article presents triangular configuration B-spline (referred

to as TCB-spline)-based vector graphics for raster image vectorization.

Based on this new representation, an automatic raster image vectorization

paradigm is proposed. The proposed framework first detects sharp

curvilinear features in the image and constructs knot meshes based on the

detected feature lines. It iteratively optimizes color and position of control

points and updates the knot meshes. By using collinear knots at feature

lines, both smooth and discontinuous color variations can be efficiently

modeled by the same set of quadratic TCB-splines. A variational knot mesh

generation method is designed to adaptively introduce knots and update

their connectivity to satisfy the local reconstruction quality. Experiments

and comparisons show that our framework outperforms the existing

state-of-the-art methods in providing more faithful reconstruction results.

In particular, our method is able to model undetected features and subtle

or complicated color variations in-between features, which the previous

methods cannot handle efficiently. Our vectorization representation also

facilitates a variety of editing operations performed directly over vector

images.

CCS Concepts: • Computing methodologies → Image processing;

Parametric curve and surface models;

Additional Key Words and Phrases: Vector images, simplex splines, knot

placement, mesh optimization

Juan Cao and Zhonggui Chen were supported by the NSFC (Grants No. 61872308
and No. 61972327), the Xiamen Youth Innovation Funds (Grant No. 3502Z20206029),
and the Open Project Program of State Key Laboratory of Virtual Reality Technol-
ogy and Systems, Beihang University (Grant No. VRLAB2021B01). Yanyang Xiao was
supported by the NSFC (Grant No. 62102174). Zichun Zhong was supported by the
NSF under Grants No. OAC-1657364, No. IIS-1816511, No. OAC-1845962, and No.
OAC-1910469. Yongjie Jessica Zhang was supported in part by NSF Grant No. CMMI-
1953323 and a Honda grant.
Authors’ addresses: H. Zhu and J. Cao (corresponding author), Xiamen Univer-
sity, School of Mathematical Sciences, Xiamen, Fujian 361000, China; emails:
hkzhu@wayne.edu, juancao@xmu.edu.cn; Y. Xiao and Z. Chen, Xiamen University,
School of Informatics, Xiamen, Fujian, 361000, China; emails: yanyangxiaoxyy@
gmail.com, chenzhonggui@xmu.edu.cn; Z. Zhong, Wayne State University, Depart-
ment of Computer Science, 5057 Woodward Ave., Suite 14109.2, Detroit, MI, 48202,
USA; email: zichunzhong@wayne.edu; Y. J. Zhang, Carnegie Mellon University, De-
partment of Mechanical Engineering, 1315 Wean Hall, 5000 Forbes Avenue, Pitts-
burgh, PA, 15213, USA; email: jessicaz@andrew.cmu.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0730-0301/2022/6-ART34 $15.00
https://doi.org/10.1145/3513132

ACM Reference format:

Haikuan Zhu, Juan Cao, Yanyang Xiao, Zhonggui Chen, Zichun Zhong,

and Yongjie Jessica Zhang. 2022. TCB-spline-based Image Vectorization.

ACM Trans. Graph. 41, 3, Article 34 (June 2022), 17 pages.

https://doi.org/10.1145/3513132

1 INTRODUCTION

Raster images are the most common format for saving raw data

acquired by imaging equipment. They use a grid of pixels to rep-

resent an image where each pixel has an individual color. While

raster images have the power to depict photo-quality pictures, the

manipulation of them without pixelating or losing image quality,

such as magnifying and editing, is very difficult. Vector images pro-

vide an alternative representation to describe images. Unlike pixel-

based raster images, vector images use geometry primitives, such

as curves and patches, to mathematically define images. Owing to

their merits such as editability and scalability, vector images have

been increasingly adopted in major operating systems and multi-

media frameworks. Since raster images are still the most prevalent

image format with their simple and straightforward representa-

tion, raster image vectorization, which converts raster images into

vector images with desired properties, is increasingly important.

In a full-color raster photograph, subtle details are present when

the scene is complex. Many of the existing raster image vectoriza-

tion methods are able to recover the specified semantically impor-

tant image features, such as the silhouettes and contours of ob-

jects, e.g., Chen et al. [2020], Lai et al. [2009], Orzan et al. [2008],

Sun et al. [2007], Xia et al. [2009], Xie et al. [2014], and Zhao et al.

[2018]. However, the finer-level details in-between detected curvi-

linear features, which are also important visual cues for faithfully

interpreting the original complex images, may not be well simu-

lated. To model complex color variation, unintended discontinuity

or artifacts may be introduced at regions away from the curvilin-

ear features, and high memory footprint may be required in ras-

terization. Motivated by this observation, we aim to design a novel

raster image vectorization method to accurately and compactly ap-

proximate both major curvilinear features and in-between color

variations.

In this article, we introduce an effective and flexible represen-

tation for vector images and tailor a fully automatic raster im-

age vectorization algorithm. Our image representation is inspired

by the triangular configuration B (TCB)-splines [Liu 2007; Liu

and Snoeyink 2007], which is a non-tensor product spline space

defined over high-order triangulations. TCB-splines share excel-

lent theoretic properties with classical univariate B-splines, such

as partition of unity, local support, polynomial reproduction, and

automatic built-in high-order smoothness. We explore these prop-

erties of TCB-splines and apply them to vector image represen-

tation. Compared to other existing methods, there are several

ACM Transactions on Graphics, Vol. 41, No. 3, Article 34. Publication date: June 2022.

https://orcid.org/0000-0002-8154-4397
mailto:permissions@acm.org
https://doi.org/10.1145/3513132
https://doi.org/10.1145/3513132

34:2 • H. Zhu et al.

advantages of our TCB-spline-based representation and the pro-

posed raster image vectorization algorithm in the following:

• Our TCB-spline-based representation is flexible and compati-

ble in modeling both smooth and sharp color variations. Both

the colors and the geometry of an object within a raster image

are explicitly represented by the same set of quadratic TCB-

splines. With a properly defined TCB-spline space, the color

values of the resulting image are C1 continuous everywhere

except across sharp features where color discontinuities are

desired. With an explicit expression, our vector representa-

tion can be rasterized efficiently with a significantly low mem-

ory footprint. Our representation also supports a variety of

direct editing and interactive authoring.

• Our novel fitting-error-driven image vectorization algorithm

is able to provide a faithful reconstruction from the original

raster images. Benefiting from the proposed knot placement

and triangulation method, the detected curvilinear features

can be accurately recovered and complicated color variations

between them can be well modeled. Our knot placement and

triangulation adaptively introduce more basis functions in the

under-fitted regions, hence the undetected finer-level features

can also be faithfully and compactly simulated.

The remainder of this article is organized as follows. Section 2

reviews some related work of image vectorization. Section 3 intro-

duces TCB-splines and their properties. Section 4 presents an al-

gorithm overview for image vectorization using TCB-splines and

Sections 5–8 describe details of the algorithm. Section 9 provides

experiments to illustrate the efficacy and flexibility of the proposed

representation and algorithm. Section 10 concludes this article.

2 RELATED WORK

With the increasing need for converting raster images into vec-

tors, raster image vectorization has gained a great amount of re-

search interest in recent years. Many methods have been proposed

for vectorization of non-photographic images, such as fonts [Scan-

Font 2017], art-work [Kansal and Kumar 2015], line drawing [Bess-

meltsev and Solomon 2019; Dori and Liu 1999; Guo et al. 2019; Hi-

laire and Tombre 2006], clip-art [Dominici et al. 2020; Hoshyari

et al. 2018; Reddy et al. 2021], and bi-tonal images [Kuo-Chin Fan

et al. 1995]. As non-photographic images contain relatively large

areas of uniform colors and gradients, vectorization algorithms are

mainly based on edge detection, corner detection, contour tracing,

segmentation, line pattern recognition, and curves/patches fitting.

Vectorization results are usually represented by vector primitives,

e.g., curves and patches.

In this article, we focus on automatic vectorization of pho-

tographic quality images. One well-known challenge of photo-

graphic images is that within certain resolution they cannot well

contain both inhomogeneous salient features and fine details and

also suffer from complex color variations in-between these fea-

tures. Hence, a powerful vector representation that is able to faith-

fully reconstruct color variations across the image space in addi-

tion to smooth or sharp features is desired. We discuss different

image vectorization approaches below.

Approximation on partitions. There are several methods at-

tempting to represent images using functions individually defined

on partitions. The linear approximations on triangulations are typ-

ical instances of such representations [Dyn et al. 1990; Kreylos and

Hamann 2001; Su and Willis 2004]. Some other methods approxi-

mate raster images using higher-order polynomials or generalized

barycentric coordinates on optimized Voronoi tessellations [Arm-

strong 2006; Cao et al. 2018; Chen et al. 2014]. The subregions of

a partition are allowed to be of arbitrary shapes and zigzag bound-

aries in Lecot and Lévy [2006]. However, due to the inherent piece-

wise structure, image patches on adjacent subregions are C0 con-

tinuously or even discontinuously jointed in the partition-based

representation. In addition, the curvilinear features in images are

approximated by sequences of line segments in general. These ar-

tifacts become more obvious when the image is scaled up to larger

sizes. Our method is able to represent the curvilinear feature us-

ing quadratic splines, where reconstructed feature curves joining

C1 almost everywhere except at joints, where the spline curves

areG1 continuous. The vector images are naturallyC1 continuous

in color variation everywhere except at the curvilinear features,

where we enforce the discontinuous color variation to match the

original color variation of the input raster image. We can also ob-

tain vector images with higher-order continuities by using higher-

order splines.

Parametric patch-based methods. Gradient meshes are a

drawing tool introduced in commercial software that is used to

interactively create multicolored vector objects. They are another

type of vector image representation that can efficiently model

smooth color transitions. The image elements of a gradient mesh-

based representation are planar rectangular Ferguson patches in-

terpolating specified information, e.g., position, color, and gradi-

ent. A gradient mesh is typically used for representing a single

object. The creation of gradient meshes for complex objects is

labor-intensive. A semi-automatic method was provided to help

convert images into gradient meshes [Sun et al. 2007]. However,

this method relies on the user’s assistances for guiding grid con-

struction. Later, a fully automatic algorithm was proposed to gen-

erate a topology-preserving gradient mesh [Lai et al. 2009]. Due to

the tensor-product restriction of Ferguson patches, it is challeng-

ing for a gradient mesh-based image vectorization method to auto-

matically align patch boundaries and preserve detailed curvilinear

features with a general spatial layout. Vector image representation

based on triangular Bézier patches is proposed in Xia et al. [2009],

where a network of triangular Bézier patches was constructed on

a planar triangular mesh. This representation supports a flexible

topology and facilitates adaptive patch distributions. However, the

color is only C0 continuous across the patch boundaries, even

though the boundaries are not curvilinear features. A hybrid vec-

tor representation using parametric patches is proposed in Chen

et al. [2020] for real-time editing. The post-processing of repeat-

edly computing the weighted averages across samples of multiple

patches is applied, which could only reduce artifacts at the patch

boundaries instead of eliminating them.

Subdivision surface-based methods. To achieve continuous

color transitions with higher orders, subdivision-based vector im-

age representations are independently presented in Zhou et al.

[2014] and Liao et al. [2012], where a vector image is defined as

a subdivision surface on a triangular mesh. In Zhou et al. [2014],

triangular meshes used for defining subdivision surfaces are re-

ACM Transactions on Graphics, Vol. 41, No. 3, Article 34. Publication date: June 2022.

TCB-spline-based Image Vectorization • 34:3

quired to be free of triangles with small angles and vertices with

large valences to guarantee the continuity of the final image rep-

resentation. To obtain a satisfying mesh, the constrained Delau-

nay triangulation is used, and additional points should be inserted.

Due to the restriction on triangulation, more triangles or vertices

would be introduced in regions with minor color variations, in-

creasing the difficulty of editing the image. In Liao et al. [2012],

the triangular mesh for defining a subdivision surface is obtained

by simplifying a dense mesh while preserving the detected fea-

tures. As the mesh simplification process heavily relies on the fea-

ture detection results, without considering approximation errors

between the vectorized output and the input raster image, compli-

cated color variations in-between features would be ignored. Be-

sides, artifacts may also occur around high/low valence vertices or

slim triangles. As there is generally no specific requirement on the

triangular mesh used for spline construction, TCB-spline-based

representation can highly adaptive to complex geometry and color

variations. Our method optimizes the triangular mesh driven by

approximation errors, hence can faithfully and compactly recover

more details. Moreover, owing to their explicit expression, the

TCB-spline-based vector image can be efficiently rasterized, requir-

ing a much lower footprint memory than the subdivision surface-

based representation.

Diffusion curve-based methods. Diffusion curves are the

fourth category of vector-based primitives used for smoothly

shaded image representation [Orzan et al. 2008]. By diffusing a

given set of automatically or manually selected curves in the im-

age space, the final vector image contains sharp features along

the selected curves with smoothly shaded regions between them.

The diffusion curve-based image vectorization is well suited for

interactive design. However, to rasterize a diffusion curve-based

vector image, one needs to solve a partial differential equation de-

fined on the entire image domain, which usually suffers from bad

runtime performances and stability problems [Jeschke et al. 2009;

Sun et al. 2012, 2014; Xie et al. 2014; Zhao et al. 2018]. Also, the

diffusion curve methods may not faithfully represent the subtle

color variations in natural images due to the limitations with Pois-

son equations. Although extensions of the diffusion curves frame-

work were developed to improve the expression control (e.g., Finch

et al. [2011], Hou et al. [2020], and Hu et al. [2019]), these meth-

ods mainly focus on applications such as image authoring and syn-

thesis, rather than automatic vectorization of given images in our

article.

3 TCB-SPLINES

In our vector image representation, the entire image is represented

as a spline surface with control points in a 5D space (i.e., position+

color). We here adopt the triangle configuration B-splines or TCB-

splines to represent images. TCB-splines are linear combinations

of simplex splines [De Boor 1976] defined over triangle configu-

rations (t-configs) [Cao et al. 2019; Liu and Snoeyink 2007; Zhang

et al. 2017]. Simplex splines and triangle configurations are the two

main ingredients for TCB-spline construction. In the following, we

will provide a brief introduction to simplex splines, t-configs, and

TCB-splines. A detailed introduction to TCB-splines can be found

in Cao et al. [2019], Liu and Snoeyink [2007], and Schmitt [2019].

Fig. 1. Recursive evaluation of quadratic simplex splines. (a) Five knots

for defining a quadratic simplex spline and the arbitrarily chosen non-

degenerate triangle (red dot lines); (b) the quadratic simplex spline defined

over panel (a), which can be computed as a linear combination of three lin-

ear simplex splines in panels (c–e).

3.1 Simplex Spline

A degree k simplex spline is a piecewise polynomial defined by a

set of points (referred to as knots) V = {t0, . . . , tk+2} ⊂ R2 that

maps a point u ∈ R2 to a real number as [De Boor 1976]

M (u|V) =
2∑

j=0

λj (u|{ti0 , ti1 , ti2 })M (u|V \{ti j }), u ∈ R2, (1)

where λj (u|{ti0 , ti1 , ti2 }) are barycentric coordinates of u with re-

spect to a non-degenerated triangle {ti0 , ti1 , ti2 } ⊂ V , satisfying∑2
j=0 λj (u|{ti0 , ti1 , ti2 }) = 1 and

∑2
j=0 λj (u|{ti0 , ti1 , ti2 })ti j = u.

When k = 0,

M (u|{t0, t1, t2}) =
{

0, u � [V),
1/|area(V) |, u ∈ [V),

(2)

is a normalized characteristic function over the triangle V =

{t0, t1, t2}, where [· · ·) is the half-open convex hull of a set of

points [Franssen 1995]. We show an example for recursive eval-

uation of a quadratic simplex spline in Figure 1, where values of

simplex splines are color-coded. Note that, the non-degenerated

triangle {ti0 , ti1 , ti2 } in Equation (1) can be chosen arbitrarily from

V , i.e., the simplex spline is well-defined, independent of the spe-

cific choice of the non-degenerated triangle [Franssen 1995]. A de-

gree k simplex spline defined in Equation (1) is automaticallyCk−1

smooth on the convex hull of V when knots in V are in general

position (i.e., there are no duplicate knots and no three knots are

collinear). Otherwise, if s knots in V are collinear, then the sim-

plex spline is Ck+1−s continuous across this line. In particular, a

degree k simplex spline with k + 2 collinear knots is C−1 contin-

uous across this line; see a quadratic example in Figure S1 of the

Supplementary Material.

3.2 T-configs and TCB-splines

Given a set K of n knots, a subset of k + 3 knots of K is referred

to as a degree k configuration. Different methods have been pro-

posed to select configurations such that simplex splines defined

over these subsets span a bivariate spline space over K with de-

sired properties [Neamtu 2001]. Configurations used in this article

are t-configs [Liu 2007]. An algorithmic method, the so-called link

triangulation procedure (LTP), is proposed to recursively gen-

erate the family of t-configs [Liu 2007; Liu and Snoeyink 2007]. In

the following, we briefly introduce the basic concept of t-configs,

the LTP, and TCB-splines. We refer the reader to Cao et al. [2019],

Liu [2007], Liu and Snoeyink [2007], and Schmitt [2019] for more

details of the theory and algorithms.

A degree k t-config of K generated by the LTP is a pair of knot

subsets (T , I) such that T
⋂

I = ∅, #I = k and #T = 3. Denote

ACM Transactions on Graphics, Vol. 41, No. 3, Article 34. Publication date: June 2022.

34:4 • H. Zhu et al.

Fig. 2. Linear TCB-splines defined over different triangulations, where Γ0

is shown in solid black lines and the polygons formed by the links of {t3 }
are filled in gray and triangulated by dotted blue lines. (a) Degree one

t-configs {({t1, t2, t6 }, {t3 }), ({t2, t4, t6 }, {t3 }), ({t5, t1, t6 }, {t3 }), ({t5, t6,

t8 }, {t3 }) }; (b) linear TCB-spline basis B{t3 } defined over t-configs in

panel (a); (c) degree one t-configs {({t1, t2, t6 }, {t3 }), ({t2, t4, t6 }, {t3 }),
({t5, t1, t6 }, {t3 }) }; and (d) linear TCB-spline basis B{t3 } defined over

t-configs in panel (c).

ALGORITHM 1: Link triangulation procedure

Input: Γk .

Output: Γk+1.

Γk+1 ← ∅;
for each vertex I

⋃{ti } of Γk do

let L be the link of I
⋃{ti };

if L is a non-degenerated polygon;

then

compute a constrained triangulation of L;

for each triangle T ∗ of this triangulation do

Γk+1 = Γk+1
⋃

(T ∗, I
⋃{ti });

end

end

end

a family of degree k t-configs of K as Γk . For a degree k t-config

({ti0 , ti1 , ti2 }, I) ∈ Γk , the subset I
⋃{ti0 } is called a vertex of the

t-config, and is also called a vertex of Γk . The segment [ti1 , ti2] ori-

ented such that ti0 is on the right-hand side is called an oriented

edge of I
⋃{ti0 } in the configuration ({ti0 , ti1 , ti2 }, I). Note that dif-

ferent degree k t-configs may have the same vertex. If we connect

all the oriented edges of I
⋃{ti0 } in all t-configs of Γk , then we get

a polygon or a degenerated polygon with zero area, and we call

it the link of I
⋃{ti0 } [Schmitt 2019]. The LTP described in Algo-

rithm 1 uses links to generate a family of degree (k + 1) t-configs,

starting from a family of degree k t-configs. Note that, an arbitrary

triangulation of the given knot set K corresponds to a family of de-

gree zero t-configs Γ0, as each face of the triangulation {ti0 , ti1 , ti2 }
corresponds to a degree zero t-config ({ti0 , ti1 , ti2 }, ∅).

Assume that XI = {(T , I∗) |I∗ = I , (T , I∗) ∈ Γk } is a set of t-

configs sharing the common second knot subset I . Ik is the col-

lection of all the different second knot subsets I in Γk . A degree k

TCB-spline basis function associated with a knot subset I ∈ Ik is

defined by a linear combination of simplex splines as in Liu [2007],

BI (u) =
∑

(T , I)∈XI

area(T)M (u|T ∪ I),u ∈ R2. (3)

The average of the knot subset I , denoted by gI =

∑
ti ∈I ti

k
, is

called the Greville site of BI . There is a one-to-one correspondence

between the control points and TCB-spline basis functions (or Gre-

ville sites). T-configs give rise to a bivariate spline space that re-

tains the fundamental properties of univariate B-splines. Hence,

the splines defined over t-configs are referred to as TCB-splines.

Figure S2 of the Supplementary Material shows examples of LTP

up to degree 2 and the associated TCB-spline basis functions.

It should be pointed out that the LTP can yield different t-config

families, then a different spline space for a given set of knots if it

starts with a different triangulation of K ; see Figure 2 for exam-

ples of linear basis functions defined over different triangulations.

Since the computation of t-configs has freedom in the selection

of triangulations in generating degree zero t-configs, TCB-splines

also provide great flexibility for applications such as reconstruct-

ing surfaces [Zhang et al. 2017] and solving partial differential

equations [Cao et al. 2019; Jia et al. 2013]. We will propose a trian-

gulation method to generate spline basis functions that are suitable

for modeling both smooth and sharp color changes in an image.

4 ALGORITHM OVERVIEW

In this article, a vector image is considered as a TCB-spline surface

in a 5D space, which is represented by a linear combination of TCB-

spline basis functions as

S(u) =
∑

I ∈Ik

BI (u)cI ,u ∈ R2, (4)

where the control point cI = (xI ,yI , rI ,дI ,bI) is a 5D vector with

the first two and last three components representing geometry and

color information, respectively. To ease the later discussion, we let

c
geo
I
= (xI ,yI) and ccol

I
= (rI ,дI ,bI) denote the geometry part

and the color part of cI , respectively; and call them the geome-

try control point and the color control point of BI (u), respectively.

Similarly, we denote Sgeo (u) and Scol (u) (respectively, pgeo and

pcol) as the geometry part and color part of the 5D surface Equa-

tion (4) (respectively, a pixel p = (x ,y, r ,д,b)), respectively.

Figure 3 shows a toy example of the image representation based

on the quadratic TCB-splines. Note that, there are pairs of C−1

continuous basis functions along the feature lines (see Section 7.1),

and only the ones above the feature lines are shown in the top row

of Figure 3(b). The corresponding degree 2 t-configs are shown in

the bottom row of Figure 3(b), where the polygons formed by the

links of second knot subset (marked by red points) are filled in gray

and triangulated by dotted blue lines. Figure 3(e) gives a close-up

view of the top right corner of control net in Figure 3(c) with five

locally labeled control points (marked in yellow), which are associ-

ated with the five basis functions in the top row of Figure 3(b) and

one-to-one corresponding to the labeled Greville sites (marked by

blue circles in the bottom row of Figure 3(b), respectively. Each pair

of C−1 basis functions are associated with a pair of control points

sharing the same positions but with different colors. The pairs of

ACM Transactions on Graphics, Vol. 41, No. 3, Article 34. Publication date: June 2022.

TCB-spline-based Image Vectorization • 34:5

Fig. 3. A toy example of quadratic TCB-splines-based image representation. (a) A unit square domain with knots (marked in solid points), degree zero

t-configs (corresponding to the triangulation of knots), and feature lines (marked in green); (b) five quadratic TCB-splines along the right segment of the

feature lines (top row) and the corresponding degree 2 t-configs (bottom row); (c) the control points (net) in 5D space; (d) the image represented by quadratic

TCB-splines with control net in panel (c) and quadratic TCB-spline basis functions partially shown in panel (b); (e) a close-up view of the top right corner of

control net in panel (c) with five locally labeled control points (marked in yellow); and (f) a close-up view of the image and the control net, where the right

segment of the feature lines in panel (a) are mapped to the feature curves in panel (f), represented by control points 1–5.

control points are slightly perturbed to ease the visualization in

Figures 3(e) and 3(f).

Our goal is to create a TCB-spline surface that best approximates

the input raster image, where each pixel has x and y coordinates

and RGB color values. We divide each pixel into two subpixel sized

triangles by connecting the diagonal. Then, we consider the input

full-color raster image as a 5D triangular surface mesh (hereinafter

referred to as image mesh) with each vertex associated with a 5D

vector p, where the components for geometry parts are normalized

to [0, 1] and color components for color parts range from 0 to 255.

We work on this triangular mesh instead of the original pixel gird

for image reconstruction with a sub-pixel accuracy. It also provides

convenience for computations in the reconstruction framework,

such as parametrization (Section 5.4).

A TCB-spline in Equation (4) is computed in a parametric do-

main (a unit square) to approximate the 5D triangular mesh. As

shown in Figure 4, we first detect curvilinear features in an im-

age that will be preserved in the later vectorization procedure; see

Figure 4(b). Second, the image mesh is parameterized onto the para-

metric domain, where the detected curvilinear features are param-

eterized onto simplified polylines; see Figure 4(c). Third, a knot

mesh is constructed by considering both sharp features and tone

variations of the image; see Figure 4(d). Then, a TCB-spline surface

is computed to approximate the 5D image mesh (see Figure 4(e)),

where each control point at feature lines is split into a pair of points

to achieve color discontinuities. Assume a pixel p of input raster

image is mapped to point u, then the pixelwise fitting errors be-

tween the raster image and the vector image Equation (4) in the

color part and geometry part are defined as | |Sgeo (u) − pgeo | | and

| |Scol (u) − pcol | |, respectively. Figure 4(f) shows the visualization

of the pixel-wise fitting error of the color part. Finally, the approx-

imation results are adaptively refined according to approximation

errors; see Figures 4(g) and 4(h). The main procedure is shown in

Figure 4 and details of each step are described in the following

sections.

5 MESH PARAMETRIZATION

To parameterize the input 5D image mesh, we first detect features

in the original raster image and map them onto polylines on the

parametric domain. These polylines induce parametrization of the

5D image mesh.

5.1 Feature Detection

Image feature detection is a fundamental operation that has vast

applications. There exist numerous algorithms in the literature for

detecting and extracting features in images, such as the Canny

edge detection [Canny 1986] and the edge drawing [Topal and

Akinlar 2012]. For the application of image vectorization in this ar-

ticle, we revise the edge drawing (ED) method and apply it to ex-

tract features in the input image. The basic idea of the ED method

is to connect anchors, i.e., pixels with local gradient extremum,

by drawing edges between them under the guidance of gradient

magnitude and edge direction map. The edge direction at a pixel

is vertical if |Gx | > |Gy |; otherwise, it is horizontal. The outputs

are one-pixel wide, contiguous chains of pixels. In the original ED

method, gradient magnitudes are computed as
√
G2

x +G
2
y , where

Gx andGy represent horizontal and vertical gradients, respectively.

ACM Transactions on Graphics, Vol. 41, No. 3, Article 34. Publication date: June 2022.

34:6 • H. Zhu et al.

Fig. 4. TCB-spline-based image vectorization pipeline. (a) Input image, which is considered a 5D triangular mesh and referred to as an image mesh;

(b) detected curvilinear features; (c) parametrization of image mesh (Section 5) onto the unit 2D domain (left) and a close-up of the parametrization in

the blue rectangle box (right), where the detected features are mapped onto the feature lines marked by solid green lines; (d) initial knot mesh (Section 6);

(e) vectorization result on panel (d), where signal-to-noise ratio (SNR) is 28.8; (f) the visualization of the pixel-wise fitting error of the color part of the result

in panel (e), where red and blue stand for 255 and 0, respectively; (g) adaptively refined knot mesh (Section 8); and (h) final vectorization result.

Fig. 5. Feature detection. (a) Input image; (b) feature detected by the ED

method [Topal and Akinlar 2012]; (c) vectorization result with the ED

method; (d) feature detected by our modified ED method; and (e) vector-

ization with the modified ED method.

Fig. 6. Feature fairing and color correction. (a) Detected feature points

marked in blue color; (b) connectivity update; (c) feature fairing; and

(d) color correction.

However, the corners of feature lines are not well located when the

value of |Gx | is close to the value of |Gy | (see Figure 5(b)), which

may cause blurred colors nearby sharp features in the later color

fitting procedure (see Figure 5(c)). Instead, we compute the gra-

dient magnitude as max{|Gx |, |Gy |} at each pixel to obtain more

accurate feature detection results; see Figures 5(d) and 5(e) for a

comparison result. Experimentally, we find that the feature curves

obtained from our modified ED method are within one pixel from

the underlying “true” feature curves.

5.2 Feature Fairing

When feature detection is done, we obtain chains of pixels. We

modify the image mesh connectivity using edge flipping. In par-

ticular, an edge flipping should be performed only if the new edge

connects two contiguous points (pixels) of a detected feature chain;

see Figure 6(b). Note that the features are zigzag chains of points

(image pixels), which would lead to unpleasant volatility in the

fitted feature results; see Figure 7(b). Thus, we smooth out the fea-

tures using Laplacian smoothing [Sorkine et al. 2004]. In particular,

a point pi of the feature chain is replaced by

pi ← (1 − λ)pi +
λ

4
(pi−2 + pi−1 + pi+1 + pi+2), (5)

with λ = 0.5. The positions of points that are not labelled as feature

points are then slightly adjusted using the Tutte parameterization

method [Tutte 1963] under the constraints of the fixed borders and

feature points; see Figure 6(c).

5.3 Color Correction

We assume that the color varies smoothly within an image except

for feature curves, where it changes discontinuously. However, the

color change usually shows some smoothness around the feature

curves for general images. As illustrated in Figure 6(c), the pixels

inside and outside the feature curve are supposed to be pure orange

and white, respectively. However, there are several pixels near

the feature curve with colors in-between the orange and white.

ACM Transactions on Graphics, Vol. 41, No. 3, Article 34. Publication date: June 2022.

TCB-spline-based Image Vectorization • 34:7

Fig. 7. The performance of our algorithm without feature fairing or color-

correction. (a) Input image; (b) result without feature fairing; (c) re-

sult without color-correction; and (d) the result with feature fairing and

color-correction.

Fig. 8. One-ring non-feature neighbors p1r and two-ring non-feature

neighbors p2r of point p, where the feature curves is colored in red.

Besides, there may exist some pixels in the one-ring neighborhood

of feature curves with quite different colors from other pixels on

the same side of feature curves, due to the inaccuracy of the above

feature detection method. The inconsistent colors of pixels on dif-

ferent sides of feature curves would lead to blurred reconstruction

results; see Figure 7(c). We resolve this problem by correcting the

color of pixels in the one-ring neighborhood of feature curves. In

particular, the color of a pixel p is replaced by the weighted aver-

age color of its one-ring non-feature neighbors p1r and two-ring

non-feature neighbors p2r as (see Figure 8)

pcol = ω1p̄col
1r + ω2p̄col

2r , (6)

where p̄col
1r and p̄col

2r are the average colors of p1r and p2r , and

weights ω1 and ω2 are set to 0.4 and 0.6, respectively. As shown

in Figure 6(d), points near feature curves have a consistent color

after color correction.

5.4 Image Mesh Parametrization

Parameterization is considered as a crucial step in the spline curve

or surface fitting problem, since the quality of fitting or reconstruc-

tion results heavily relies on the parametrization. In our image fit-

ting problem, a low-distortion bijective mapping between the in-

put image mesh and a unit squared domain is required. To achieve

this goal, we first map each original feature curve to a simplified

polyline on the parametric domain such that the mapping is one-

to-one. Then, we obtain the parametric coordinates of other points

using the Tutte parameterization method [Tutte 1963].

Here, we adapt the framework of the classic Douglas-Peucker

(D-P) algorithm [Douglas and Peucker 1973] to the parametriza-

tion of feature curves. With a pre-specified distance threshold

εd (three-pixel width in this article), the basic process of the

Fig. 9. Parametrization of the image in Figure 5. (a) Feature polylines;

and (b) parametrization derived by using the Tutte parameterization

method [Tutte 1963] with the constraints shown in panel (a).

D-P algorithm for simplifying a given feature curve with vertices

p1, . . . , pn is as follows:

Step 1. Find the farthest point pi from the line segment formed

by the first and the last points p1, pn .

Step 2. If the distance between pi and p1pn is smaller than εd ,

then all the points between p1 and pn are discarded; other-

wise, pi is included in the simplified polyline.

Step 3. Two new segments p1pi and pi pn are then recursively

handled by D-P algorithm.

The D-P algorithm repeats until no more points are needed to

add to the resulting set. To guarantee a one-to-one mapping be-

tween the unit parametric-domain and triangular image mesh, we

first have to ensure a one-to-one mapping between the feature

curve and the simplified polyline. To this goal, we slightly mod-

ify the classic D-P algorithm by also including pi in the resulting

set in Step 2, if the projection of points p1, . . . , pn to the segment

p1pn is not consecutively located.

Polylines generated by the D-P algorithm provide a close ap-

proximation to the original feature curves. We can obtain low dis-

tortions of the parameterization by directly projecting the feature

points to the polylines. An example is shown in Figure 9. From

these overlap-free constraints, a continuous mapping from the im-

age mesh to the parametric domain is derived using the Tutte pa-

rameterization method [Tutte 1963]. Although there is no guar-

antee that the mapping is bijective with the feature curves and

boundary constraints, numerically, we never find overlapping in

our experiments. It is owing to the very low distortion introduced

by feature curve parameterization. Note that we can also directly

use the geometry part of the faired feature curve as the parameter

values. However, this straightforward approach will introduce re-

dundant knots around the curved features, as shown in Section 6.1

for the details of knot placement for modeling discontinuous color

variations. Therefore, there are many more control points than the

feature points around the curved features, leading to overfitting.

6 KNOT MESH GENERATION

In TCB-spline-based image vectorization, the quality of recon-

structed image relies heavily on both the position and connectivity

of knots. However, the approximation error function, depending

on knot position and connectivity, is highly nonlinear and hard to

be optimized efficiently. In fact, there is generally no effective and

ACM Transactions on Graphics, Vol. 41, No. 3, Article 34. Publication date: June 2022.

34:8 • H. Zhu et al.

Fig. 10. Knot mesh optimization and adaptive knot mesh updating. (a) Input image; (b) initial knot placement and feature lines (marked in green); (c, d)

results of knot position and connectivity optimization after the first iteration of alternating optimization, respectively; (e) plot of the energy versus the

number of iterations for the alternating optimization; (f) knot mesh after the alternating optimization algorithm converges; (g) reconstruction result based

on the knot mesh in panel (f); (h) fitting error of the reconstruction result in panel (g); (i) pixels with a large fitting error; (j) clusters of pixels in panel (i) and

initial position of new knots (marked in green); (k) the optimized knot mesh with new knots inserted; and (l) the fitting result based on the knot mesh in

panel (k).

intuitive method for instructing knot placement of spline-based

reconstruction or approximation. Even for the simplest case, e.g.,

classic B-spline curve fitting, we need to solve a complex optimiza-

tion problem to compute the optimal knot number and position,

which is extremely time-consuming in general [Gálvez and Igle-

sias 2012; Xie et al. 2012; Yoshimoto et al. 2003]. In this section, we

introduce a variational method to effectively generate knot meshes

with optimal position and connectivity according to minimization

of approximation errors. Instead of directly solving the original

high nonlinear optimization problem, we solve a reasonably sim-

plified optimization problem, which generate knot mesh close to

optimal for TCB-spline approximations.

6.1 Initial Knot Placement

A natural raster image has noticeable curved features and exhibits

color discontinuities across these features. We have to represent

curved features and smooth/discontinuous color variations in the

entire image using TCB-splines faithfully. Recall that TCB-splines

possess built-in smoothness properties if all knots are in general

position. We focus on quadratic TCB-splines, which are the lowest

degree TCB-splines that automatically possess C1 continuity.

To approximate discontinuity, we introduce collinear knots and

multiple knots along the feature lines to locally reduce the continu-

ity of TCB-spline bases. In particular, we evenly distribute one to

three knots on each segment of feature lines, and increase the mul-

tiplicity of the knot at each vertex of the segment by two, i.e., each

vertex is considered as a triple knot; see Figures 10(b) and 11. Be-

sides, the four corners of the unit parametric domain are also con-

sidered as triple knots and included in the knot set. Note that, there

is a one-to-one correspondence between the input image and the

parametric domain by the parametrization method in Section 5.4.

Fig. 11. Collinear knots along feature lines. The triple knots at corners are

slightly perturbed to ease the visualization.

In other words, there is a color function defined over the para-

metric domain, denoted by ϕ (u). We then greedily insert knots

between feature lines within the parametric domain according

to the error of the piecewise linear approximation to the color

function. More precisely, we triangulate the existing knots on the

parametric domain by the Delaunay triangulation method; then,

we compute the best linear approximation to the color data within

each triangle face; a point randomly sampled from the triangle

face with the maximum approximation error is added into the

knot set of the triangulation; and the Delaunay connectivity is

locally updated. The vertex insertion procedure is carried out

until a specific threshold εc of the mean of the pixel-wise fitting

error of the color part (MEC) is reached; see Figures 10(b)–10(d).

6.2 Knot Mesh Optimization

We denote the knot mesh obtained in the previous section by

T = (V ,E, F), where V = {t1, . . . , tl }, E = {e1, . . . , em }, and

F = { f1, . . . , fn } are the sets of knots, edges, and faces, respectively.

Based on the knot mesh T , we obtain a piecewise linear approxi-

mation to the target color function ϕ (u) with an approximation

error in the L2 norm:

ε (T) =
n∑

k=1

∫
fk

|ϕ (u) − ϕfk
(u) |2du, (7)

ACM Transactions on Graphics, Vol. 41, No. 3, Article 34. Publication date: June 2022.

TCB-spline-based Image Vectorization • 34:9

where fk ∈ F is a face of the knot meshT andϕfk
(u) is the optimal

linear approximation toϕ (u) on fk . Note that, TCB-splines defined

over the knot mesh T are also piecewise polynomials over a parti-

tion induced by the associated knots, where the partition is much

finer than the knot meshT [Cao et al. 2019]. Hence, the piecewise

linear functions on the knot meshT as defined in Equation (7) can

be viewed as a simplified model of our TCB-splines. The energy

function in Equation (7) is possible to be further minimized with

respect to the knot positions and connectivity of the knot mesh

T . Although the minimizer of the above energy function only pro-

vides a knot distribution that is best for piecewise linear approxi-

mation to the given image, the proposed energy minimization still

provides a heuristic to generate knots that are reasonable for our

TCB-spline approximation. The proposed energy function is very

difficult to be globally optimized due to its high non-convexity and

non-linearity. In the following, we resort to finding a close to op-

timal minimizer of the energy function by alternating between

two steps: knot position optimization and mesh connectivity

optimization.

6.2.1 Knot Position Optimization. In the knot position opti-

mization, we optimize the positions of knots while fixing the con-

nectivity of the mesh. We propose to minimize the energy func-

tion by a gradient-based minimization algorithm. We first need to

compute gradient of the energy function. Note that any changes

to the knot positions not only affect the integral domain fk in the

energy function in Equation (7) but all the optimal linear approx-

imation function ϕfk
(u) to ϕ (u) on fk . To simplify the gradient

computation, we assume that ϕfk
(u) is independent of knot po-

sitions. Therefore, by applying the generalized Leibniz rule [Flan-

ders 1973], we obtain the gradient formula as

∂ε (T)

∂ti

=
∑

j ∈Ni

∫
−−−→
ti t j

(|ϕ (u) − ϕfi j
(u) |2 − |ϕ (u) − ϕfji

(u) |2) (t j − u)⊥du

‖t j − ti ‖
,

(8)

where Ni is the set of indices of one-ring neighboring vertices of

ti , fi j and fji are the triangles on the left- and right-hand sides

of the directed edge
−−→
ti t j , respectively, and (·)⊥ means rotating a

vector by 90◦ in the clockwise direction.

Now, we are left with choosing step size such that all variables

move an appropriate amount in the steepest descent direction.

Note that the energy function depends on the knot positions ti .

In the classic gradient descent algorithm, we update all the vari-

ables simultaneously according to a certain step size δ in each it-

eration. In the context of optimizing our energy functions, a knot

ti with corresponding gradient components
∂ε (T)
∂ti

is moved by a

distance δ ‖ ∂ε (T)
∂ti
‖. The moving distances may vary considerably

from knot to knot and give rise to overlaps in the knot mesh, lead-

ing to a sharp increase in the energy function. Typically, the step

size can be initiated from a unit length and then be reduced by

half until the energy decreases. However, this is straightforward

yet expensive way to decrease the energy function proposed in

this article. Instead, we provide an efficient and intuitive choice

of step size to guarantee the convergence of the gradient descent

method. In particular, assume Imax is the maximal number of itera-

tions of our gradient-based optimization algorithm, then each knot

ti is updated according to the position of its neighboring knots as

t
(k+1)
i = t

(k)
i − δ (k)

i

∂ε (T)

∂ti

/
�
�
�
�
�

∂ε (T)

∂ti

�
�
�
�
�

, (9)

where k is the index of the current iteration and

δ
(k)
i = α ·

(
1

2

) k
Imax−k

min
j ∈Ni

| |ti − t j | | (10)

is the step length for ti in iteration k with α a constant scaling fac-

tor. In our experiments, α ∈ [0.3, 0.5] usually gives a satisfactory

result. The knot updating is terminated if the maximum number

of iterations is exceeded. If any flipped faces appear at some it-

eration steps, then we reduce the step sizes of the corresponding

knots by half until these situations are eliminated. The plot of the

energy function with respect to the iteration number is presented

in Figure 10(e), from which we can observe that our optimization

algorithm achieves a fast convergence. Figure 10(c) shows the op-

timized knot mesh after an iteration of knot position optimization.

6.2.2 Knot Connectivity Updating. The connectivity of the knot

mesh also plays an important role in TCB-spline-based approxi-

mation. To obtain the optimal connectivity of the knot mesh, we

start from the constrained Delaunay triangulation of the obtained

knot set, followed by an edge-flipping operation to progressively

improve the connectivity. In particular, we create a Delaunay trian-

gulation with constrained edges on feature lines obtained in Sec-

tion 5.4. Then, an edge that is not constrained is flipped if this

would decrease the sum of the energy on its incident triangles.

We repeatedly perform the edge flipping until no further decrease

of energy is possible; see Figure 10(d) for an example of the knot

mesh after connectivity optimization. Note that our knot mesh gen-

eration method here may introduce long and skinny triangles to

reduce the fitting errors. We observe no numerical trouble in our

application with long and thin triangles. However, the extraordi-

narily long and skinny triangles make our adaptive TCB-spline rep-

resentation redundant. To achieve more compact representations,

we remove knots whose distances to the closest feature curves are

smaller than one pixel-width, or adjacent triangles have inner an-

gles smaller than 5 degrees or greater than 175 degrees. Then, local

knot connectivity optimization will be re-applied instantly.

7 IMAGE APPROXIMATION

The goal of image vectorization in this article is to represent

both the geometry information and the color variation using

TCB-splines. In particular, we need to approximate the detected

salient edges or contours and preserve sharp color variation across

features while representing smooth color variation in-between

feature lines in an image. To achieve this goal, we first enforce con-

straints on the knot mesh to introduce simplex splines that are dis-

continuous across feature lines. We then compute an approxima-

tion of the input image using the method of weighted least squares.

7.1 TCB-splines with Discontinuous Functions

A consequence of collinear knots at feature lines and the con-

straints of feature edges in the triangulation is the desired

ACM Transactions on Graphics, Vol. 41, No. 3, Article 34. Publication date: June 2022.

34:10 • H. Zhu et al.

Fig. 12. Basis split. (a) Collinear knots t0, t2, and t3, where the three-

fold t0 is pulled apart into three separate knots for t-config com-

putation and illustration; (b) C0 TCB-splines defined over T-configs

{({t0, t1, t2 }, I), ({t0, t2, t4 }, I), ({t0, t4, t5 }, I) }, where I = {t0, t3 };
(c, d) C−1 basis functions obtained by the trimming TCB-spline in panel

(b) along the feature line t0t3t2.

discontinuity of a pair of simplex splines across feature lines. Note

that a TCB-spline basis is a linear combination of simplex splines

defined over t-configs sharing the common second knot subset;

see Figure S3 of the Supplementary Material. Hence, each pair of

discontinuous simplex splines contribute to the same TCB-spline

and are equal when restricting to the correspondingly crossed fea-

ture lines. In other words, a quadratic TCB-spline isC0 continuous

across feature lines and can always split into the sum of a pair of

C−1 functions; see Figure 12 as an example. Please also see Figure

S3 of the Supplementary Material for a more detailed example. In-

stead of considering a TCB-spline BI across feature lines as a single

spline, we consider the corresponding pair of C−1 functions (de-

noted by BI,1 and BI,2) as separate splines and use them in later

approximation. By this function substitution, we are able to rep-

resent both continuous (geometry) and discontinuous (color vari-

ation) functions across feature lines using the same set of spline

functions. We let Id denote the collection of all the different sec-

ond knot subsets of TCB-spline basis functions that cross feature

lines, and let Ic := I \ Id .

To find the optimal control points of TCB-splines, we consider

the following problem: given a preprocessed image (generated

from the feature fairing and color correction operations) with each

pixel considered as a 5D point pi = (xi ,yi , ri ,дi ,bi) and its para-

metric coordinates ui obtained in Section 5.4, and a set of TCB-

spline bases BI , I ∈ I = Ic ⋃Id with Id defined previously, the

goal is to compute a TCB-spline surface

S(u) =
∑

I ∈Ic

cIBI (u) +
∑

I ∈Id

(cI,1BI,1 (u) + cI,2BI,2 (u)), (11)

where cI are control points in a 5D space to approximate the data

pi . In the following, we compute the optimal geometry control

points and color control points by approximating the geometry

and the color variation using weighted least-squares.

7.2 Geometry Approximation

Note that the features convey the most important shape infor-

mation of an image. Hence, it is desired to preserve the feature

lines (e.g., contours). Given the data points x
geo
i = (xi ,yi), i =

1, 2, . . . ,M , we compute the optimal geometry control points c
geo
i

by solving the following weighted linear least-squares problem

with linear equality constraints:

min
∑
k

ω
geo
k

�
�
�
x

geo
i − Sgeo (ui)��

�

2
, c

geo
I,1
= c

geo
I,2
, I ∈ Id , (12)

where Sgeo (u) is the geometry part of the 5D surface defined in.

Equation (11) and ω
geo
k

is the weight for magnifying the effects of

data points at boundaries or features. In our implementation, ω
geo
k

is set to be 1 by default and increased to 20 and 100 for data points

at features or boundaries, respectively.

7.3 Color Approximation

The extracted one-pixel width features could have pixels with col-

ors similar to pixels from both sides. The approximation results

may come out blurry at features if we try to preserve the color in-

formation at features. Hence, different from previous geometry ap-

proximation, the color information at the feature lines is ignored

in the color approximation. As the color changes sharply across

features, we solve the following unrestricted weighted linear least-

squares problem to achieve locally discontinuous color variation:

min
∑
k

ωcol
k

�
�
�
xcol

i − Scol (ui)��
�

2
, (13)

where Scol (u) is the color part of the 5D surface defined in Equa-

tion (11), and ω
geo

k
is used for eliminating the effects of colors at

feature lines in the least-squares problem. In particular, ωcol
k

is set

to 0 if xi is at feature lines; otherwise, it is set to 1. Figures 10(g)

and 10(h) show approximation results obtained by computing the

optimal geometry and color control points. We can observe that

the features are basically preserved. To improve reconstruction ac-

curacy, we resort to adaptively adding more knots at regions with

a large fitting error and locally optimizing the mesh topologies.

8 ADAPTIVE REFINEMENT

In our adaptive refinement stage, the reconstruction quality of the

vector image is progressively improved by adaptively refining the

knot mesh according to approximation errors obtained in the previ-

ous reconstruction procedure. Note that the number, distribution,

and connectivity of newly added knots are three major factors in-

fluencing the efficiency of our adaptive refinement algorithm. Un-

reasonable new knot insertion scheme may cause more iterations

or introduce an excessive number of knots to achieve a satisfying

result. In this section, we provide a new knot placement method. In

each refinement iteration, we first add a moderate number of knots

at parametric regions with a large fitting error. Then, we locally op-

timize the position of knots and their connectivity to other exist-

ing knots. Finally, we optimize the control points of TCB-splines

defined over the updated knot mesh as we did in Section 7. The

ACM Transactions on Graphics, Vol. 41, No. 3, Article 34. Publication date: June 2022.

TCB-spline-based Image Vectorization • 34:11

adaptive refinement iteration is repeated until a required number

of iterations is reached or both the MEC and the fitting error of the

geometry part (MEG) are smaller than the prescribed threshold εc

and εд , respectively. Details of the new knot placement scheme in

the sth adaptive fitting iteration step are described in the following

subsections.

8.1 New Knot Insertion

We decide the number of newly added knots according to the lo-

cal fitting errors. We first introduce more knots at feature lines to

preserve the salient features if the MEG fails to reach threshold εд .

As the feature reconstruction can be considered as fitting a curve

to the detected salient feature line, we straightforwardly refine the

knot interval with a large fitting error at feature lines. In particular,

two new knots are evenly inserted to the knot interval if there is

a pixel with a fitting error larger than a unit (one-pixel width). To

add new knots off feature lines, we first find out all the pixels with

a fitting error larger than Max Es

2 , where s is the fitting iteration

index and MaxEs is the maximum fitting error of the color part of

the s-th iteration; see Figure 10(i) for an example of s = 1. Second,

the selected pixels are grouped into several clusters according to

the distance between them. In particular, two selected pixels are

in the same cluster if they are within two-ring neighborhood of

each other; and clusters with less than 15 pixels are discarded; see

Figure 10(j). Third, for each cluster, we compute the accumulated

fitting error on the two-ring neighborhood of each pixel. The cen-

ter of a pixel with the largest accumulated fitting error is selected

as a new knot. Meanwhile, this pixel together with its two-ring

neighbors are removed from the cluster. For each cluster, this pro-

cedure is repeated until at most 10 new knots have been selected

or all the pixels have been processed. As an example shown in

Figure 10(j), there are a total of 52 new knots inserted into the knot

set, whose position and connectivity will be further optimized in

Section 8.2.

8.2 Knot Mesh Local Optimization

For a knot mesh with new knots inserted, we apply the knot mesh

optimization described in Section 6.2 to further locally adjust the

position and connectivity of new knots. The original knots on the

feature lines and outside the two-ring neighborhood of the new

knots are fixed in the optimization; see Figure 10(k) for an exam-

ple of the optimized knot mesh. The vectorization result after one

iteration of adaptive knot insertion and optimization is shown in

Figure 10(l), from which we can observe that the quality of color

approximation in the petals is improved.

9 EXPERIMENTAL RESULTS

In this section, we present experimental results of our image vec-

torization framework. To demonstrate the quality of our vector im-

age representation, we also compare our method with four classi-

cal methods from Lai et al. [2009], Liao et al. [2012], Orzan et al.

[2008], and Xie et al. [2014] and two state-of-the-art methods

from Chen et al. [2020] and Zhao et al. [2018]. We perform all our

experiments on a laptop PC with a 3.1 GHz Intel Core i5 processor

and 12 GB memory.

Table 1. Statistics for the Examples of Image Vectorization Using Our

TCB-spline-based Representation

Examples #Pixels #Iter. #Knots #C.P. MEC Stor. PSNR Time

Figure 4 793 × 569 3 1,259 3,700 2.07 98 38.9 130.5

Figure 13 521 × 482 2 305 719 1.52 22 41.2 18.0

Figure 14 505 × 561 2 1,058 2,218 1.24 71 44.4 93.0

Figure 15 571 × 546 2 3,912 6,482 2.19 221 37.5 330.6

Figure 16(b) 225 × 214 1 176 382 1.14 11 42.4 6.7

Figure 16(c) 225 × 214 1 176 677 0.92 17 44.5 10.8

Figure 17(b) 544 × 475 1 912 1,305 2.64 42 33.4 31.6

Figure 17(c) 544 × 475 3 1,770 2,379 1.70 78 39.2 178.8

Figure 18 400 × 278 3 1,735 3,652 1.98 107 39.5 216.1

Figure 19 946 × 633 2 2,591 5,834 2.09 168 34.1 551

Figure 20 512 × 512 2 4,163 9,987 1.61 285 40.4 473.4

Figure 21 300 × 450 1 568 986 2.56 38 35.8 22.7

Figure 22 430 × 618 2 1214 2,605 1.29 76 41.8 109.2

Note: # denotes the number of elements; Iter. is short for iterations; C.P. is short
for control points; MEC is short for the mean of the fitting error in color part;
Stor. (KB) is short for storage, or the memory used to store the vector image
without any compression; PSNR means the peak signal-to-noise ratio; Time (s)
is the running time for entire adaptive refinement procedure.

Examples of vectorization and local magnification can be found

in Figures 13–15. The resulting images are almost C1 continu-

ous everywhere except across features lines. We can also adopt

higher-order TCB-splines in our image vectorization framework to

achieve smoother color changes. Examples of quadratic and cubic

TCB-splines-based representation obtained from the same set of

knots are shown in Figure 16. We show examples of quadratic and

cubic TCB-spline-based vector images with comparable MEC in

Figure S6 of the Supplementary Material. We can observe that the

cubic result has visually smoother color variation and lower MEC

than the quadratic result while introducing more control points.

9.1 Comparison to Patch-based Methods

There are several techniques using higher order parametric

functions for vector image representation. One of the classical

approaches is the gradient mesh, which represents vector images

by rectangular arranged Ferguson patches. The discontinuities

at the feature curves are modelled using degenerated patches.

Whereas, the unstructured nature of the TCB-splines makes it

more flexible to adaptively distribute the knots or control points

to the curvilinear features and complex color variations. As shown

in Figure 17, our TCB-spline-based representation takes much less

storage than the gradient mesh representation [Lai et al. 2009] to

achieve results with comparable or higher quality. In Chen et al.

[2020], a hybrid vector representation using Hermit patches and

detailed features is proposed for localized thin-plate spline rasteri-

zation. However, this patch-based method cannot entirely remove

the artifacts around patch boundaries. Whereas, we achieve

visually smoother and more satisfying results, benefiting from the

automatic smoothness of the TCB-splines; see the comparison in

Figure 18.

9.2 Comparison to Diffusion Curve-based Methods

The diffusion curve-based vector images represent color dis-

continuities explicitly across the specified diffusion curves.

ACM Transactions on Graphics, Vol. 41, No. 3, Article 34. Publication date: June 2022.

34:12 • H. Zhu et al.

Fig. 13. Candle. (a) Input image; (b) magnified local view of the input; (c) vectorized image; (d) magnified local view of the vectorized image; and (e) control

mesh with features (black lines) of panel (c).

Fig. 14. Rose. (a) Input image; (b) magnified local view of the input; (c) vectorized image; (d) magnified local view of the vectorized image; and (e) control

mesh with features (black lines) of panel (c).

Fig. 15. Butterfly. (a) Input image; (b) magnified local view of the input; (c) vectorized image; (d) magnified local view of the vectorized image; and (e) control

mesh with features (black lines) of panel (c).

Analogously, our vectorization results represented by quadratic

TCB-splines are theoretically C−1 continuous across the detected

curvilinear features and naturally C1 at the remaining regions.

There are usually some subtle or complicated color changes

in-between the detected features within a photographic image. It

is also hard to tell whether there is a color discontinuity in these

regions. To represent these complex color variation, diffusion

curve-based method may require dense curve networks, which

may also introduce unintended discontinuities. Owing to the error-

driven knot optimization method, our TCB-spline vectorization

method can better capture and model the subtle or complicated

color variations away from the detected features, hence achieve

visually smoother results; see the comparison of our method with

two classical diffusion curve-based method [Orzan et al. 2008; Xie

et al. 2014] in Figure 19. In the state-of-the-art [Zhao et al. 2018],

diffusion curves are optimized to be more compact, smoother and

closed to achieve better approximation accuracy. However, there

are still more or totally longer diffusion curves than the feature

curves in our method, which introduce unintended discontinuity;

see Figure 20.

9.3 Comparison to Subdivision Surface-based Methods

Similar to subdivision surface-based methods, our method can

also achieve continuous color variation with higher orders. How-

ever, the subdivision surface desires regular control meshes free

of high/low valence vertices (refer to as extra-ordinary vertices)

and thin and long triangles. Otherwise, the limit surface may con-

tain artifacts around extra-ordinary vertices or slim triangles; see

high-resolution rasterization of subdivision-based vector image in

Figure 21. Perhaps, for this reason, the control mesh is required

to be Delaunay and the minimal angle of triangles no less than

20 degrees in Zhou et al. [2014]. In contrast, there is generally

no specific requirement on either the topology of knot meshes or

the control nets of TCB-splines. Hence, TCB-splines are relatively

ACM Transactions on Graphics, Vol. 41, No. 3, Article 34. Publication date: June 2022.

TCB-spline-based Image Vectorization • 34:13

Fig. 16. Cubic and quadratic results on the same knot mesh. (a) Input im-

age; (b, c) quadratic and cubic results on a same knot mesh in panel (d),

respectively; (e, f) the control meshes of panels (b) and (c); (g–i) close-up

views of the rectangular regions in panels (a–c), respectively.

Fig. 17. Representation compactness and quality compared to gradient-

mesh-based representation [Lai et al. 2009]. (a) vectorization result using

the gradient mesh representation (MEC: 2.76, storage: 206 KB) and the

gradient mesh; (b) vectorization result using our TCB-splines with compa-

rable quality to panel (a) (MEC: 2.64, storage: 42 KB) and the control mesh

(#C.P.: 1,305); and (c) high-quality vectorization result using TCB-splines

(MEC: 1.70, storage: 78K) and the control mesh (#C.P.: 2,379). Panel (a) is

taken from Lai et al. [2009]. ©2009 ACM. Included here by permission.

more flexible in representing complex geometry and color vari-

ations. With carefully designed knot optimization schemes, our

TCB-spline-based vector representation is more adaptive to the

complex color variations. As shown in Figures S8(c) and S8(d) of

the Supplementary Material, our methods use fewer control points

to achieve comparable quality vectorization to the method in Liao

et al. [2012].

However, TCB-spline-based vector image representation pro-

vides explicit formulations, enabling efficient rasterization for vec-

tor image display. By directly evaluating the formulations, the

memory footprint nearly changes in rasterization, regardless of

the output resolution. Differently, the limit of a subdivision sur-

face may be unable to be explicitly expressed. To achieve vector

image display, one needs to apply explicit subdivision several times

until the refined control mesh is dense enough [Liao et al. 2012].

Hence, the subdivision-surface-based method may incur higher

memory and computation costs for generating high-resolution ras-

terizations. We compare the performance of the single-threaded

version of our algorithm and the algorithm in Liao et al. [2012]. Our

method requires 0.4 GB for rasterizing Figure 21 of 1.1×107 pixels

(about the resolution for 4K displays), while [Liao et al. 2012] re-

quires 3.4 GB, starting from an initial control mesh with 2,716 faces

and applying six subdivisions. Note that both TCB-spline-based

and subdivision surface-based representations have local support

properties. Hence, the rasterization of TCB-spline-based vector im-

age can also be accelerated by similar technologies, as in Liao et al.

[2012].

9.4 Statistics

The statistics of the knot mesh and control mesh complexity, ap-

proximation errors of our vectorization results and the running

time are summarized in Table 1. To compute the approximation

error per pixel, we rasterize our vectorization output and compare

it with the original image. For each tested example, the thresholds

εc and εд for MEC and MEG are 2- and 1-pixel width, respectively.

The entire adaptive refinement for image vectorization takes be-

tween 6.7 and 551 s, depending on the resolution and complexity

of the input raster images. Each iteration of the adaptive refine-

ment (Section 8) includes processes of knot mesh generation (Sec-

tion 6) or updating (Sections 8.1 and 8.2) and image approxima-

tion (Section 7). The later process, which includes basis function

computation/updating and control points optimization, is the most

time-consuming step. It can usually finish in 294 s for all the test

models. For example, the Rose model in Figure 14 with a moderate

size takes a total of 93 s and two iterations to reach the thresh-

old of MEC. In the first iteration, the knot mesh generation takes

1.91 s, and the image approximation takes 23.9 s, where the basis

function computation and control points optimization take 19.9 s

and 4 s, respectively. A quantitative comparison (including RMSE,

length of curves, number of control points, and storage) with the

above three types of methods can be found in Section 3.1 of the

Supplementary Material.

9.5 Editing

We also demonstrate that our vector representation supports a va-

riety of editing operations; see Figure 22 for the shape and color

editing results. By changing the color and position of the con-

trol points, we obtain new vertorization results. We construct a

prototype interactive system for directly editing the TCB-spline-

based vector image representation in real-time without resorting

to intermediate raster representation. Although the number of con-

trol points in TCB-spline-based image representation generally in-

creases with the complexity of input images, it is still much smaller

ACM Transactions on Graphics, Vol. 41, No. 3, Article 34. Publication date: June 2022.

34:14 • H. Zhu et al.

Fig. 18. Representation compactness and quality compared to the thin-plate-based method [Chen et al. 2020]. (a) Results from Chen et al. [2020]; (b) a

close-up view of result in panel (a); (c) the patch boundaries of panel (b); (d) vectorization result using our TCB-splines (MEC:1.98, number of control points:

3,652); (e) a close-up view of panel (d); and (f) the control mesh of panel (e). Panels (a–c) are taken from Chen et al. [2020]. @2020 IEEE. Included here by

permission.

Fig. 19. Comparison of vectorization results with [Orzan et al. 2008; Xie et al. 2014]. Here, we only show close-up views but report the original data in

Table 1. (a) Input image from Orzan et al. [2008]; (b) diffusion curve-based representation (results from Orzan et al. [2008] without storage reported);

(c) hierarchical diffusion curve-based representation (results from [Xie et al. 2014], storage: 298KB); (d) TCB-spline-based representation (Storage: 168 KB);

and (e) control mesh of panel (d).

Fig. 20. Representation compactness and quality compared to the inverse diffusion curve-based method [Zhao et al. 2018]. (a) Input image; (b) vectorization

result from Zhao et al. [2018] (RMSE: 0.0262; total diffusion curve length (normalized such that the length of the longest side of image is 1): 19.11); (c) a

close-up view of panel (b); (d) diffusion curves of panel (b); (e) our result (RMSE: 0.0095; total feature curve length (normalized such that the length of the

longest side of image is 1): 8.99); (f) a close-up view of panel (e); and (g) control mesh and control polygon of feature curves (marked in black lines) of panel

(f). Panels (a–d) are taken from Zhao et al. [2018]. ©2018 IEEE. Included here by permission.

than the number of pixels of the input raster images. To avoid

tediously individual control points editing, we provide different

editing tools to achieve coarse-to-detailed levels of editing. Our

real-time editing tools include a region of interest (ROI) selec-

tion operation, ROI-based, circle-based, and control-point-based

shape/color editing operations; see the supplementary video. The

user can use the brush tool and feature polygon selection tool to

select control points of ROI and feature curves for editing, respec-

tively. The ROI-based shape deformation is achieved by using the

Mean Value Coordinates method [Hormann and Floater 2006]. We

first specify a bounding cage that encloses ROI, and then continu-

ously move the enclosed control points by adjusting the cage ver-

tices. The circle-based tool lets us manipulate (e.g., twirl, push in-

ward/outward, and transform) the circled control points, similar to

the Liquify tool for raster images in Adobe Photoshop. We resort to

the finest level of editing, i.e., individual control point editing only

when the provided tools cannot achieve satisfactory editing results.

Control points may also be edited by incorporating our interactive

system with other more sophisticated manipulation methods [Ja-

cobson et al. 2011; Xie et al. 2014].

9.6 Authoring

The example in Figure 23 shows an authoring result using qua-

dratic TCB-splines-based vector image representation. We also

include the interactive sequences in the accompanying video.

We take as input the specified quadratic feature curves (see

Figure 23(a)). Curve modeling methods (e.g., Chen et al. [2019]

and Yan et al. [2017]) can be used to design the input curves

ACM Transactions on Graphics, Vol. 41, No. 3, Article 34. Publication date: June 2022.

TCB-spline-based Image Vectorization • 34:15

Fig. 21. Adaptive representations and artifacts at extra-ordinary vertices: comparison with subdivision-based methods. (a) Input; (b) control mesh and vector

result by [Liao et al. 2012]; (c) result by our method; (d) close-up views of panel (b, top) and panel (c, bottom), where an extra-ordinary vertex of subdivision

surface is marked by red ovals and the contrast is enhanced by the 3D reconstructed surfaces (gray-scale as height) in the last column.

Fig. 22. Color editing and shape editing. (a, d) Input vector image and the

corresponding control mesh; (c, d) color and shape editing result and the

corresponding control mesh.

interactively. First, we sample the feature curves and generate fea-

ture polygons on the parametric domain using D-P algorithms de-

scribed in Section 5.4. Second, collinear knots and multiple knots

are introduced along the feature lines and at the parametric do-

main as in Section 6.1. Moreover, we uniformly distribute a given

number of knots on the parametric domain; see Figure 23(b), where

ten extra knots are uniformly placed at the domain boundary.

Third, we compute the t-configs and the TCB-spline basis as in

Section 3.2. For each TCB-spline basis BI (u) associated with knot

subset I , we assign the average of knots in I to the geometry part

of the control points; see Figure 23(c). The color part is specified

as a default value. Last, we can further modify the vector images

by adjusting the control points, as described above. Figure 23(d)

shows the output vector images by only changing the colors using

the brush tools in our editing system.

We can further insert more primitives by specifying a sequence

of points with assigned colors in the image domain to indicate

the rough position of control points. We also provide four options

to achieve different color variations around the newly introduced

control points, includingC1 continuous,C1 continuous along poly-

line connecting specified points,C0 andC−1 continuous across fea-

ture curves, as shown in Figures 23(e) and 23(h). Please refer to

Figure S10 and Section 4 in the Supplementary Material for the de-

tails about primitive insertion and the supplementary video shows

the interactive manipulations for authoring and editing. The dif-

fusion curve-based vector images represent color discontinuities

explicitly across all inserted diffusion curves. In contrast, our rep-

resentation is more flexible to create both smooth and discontin-

uous color changes. As the examples demonstrate, our method

provides controllable results from a compact user specification. We

also report the numbers of feature curves and control points for

this example to intuitively measure the input complexity and au-

thoring feasibility. Note that the knot mesh in Figures 23(b) and

23(f) only provides the intermediate result for generating the final

control meshes. Users do not need to worry about the knot mesh

generation or editing in the application of authoring, as they can

intuitively edit the vector image via control meshes.

Limitation. Existing research in vectorization is done with

various objectives, such as reducing user intervention, minimizing

the number of colors used, providing multiresolution abstraction

and stylization, preserving editability, or matching appearance

with the input. Since our goal is to provide a faithful recon-

struction of the input raster image, our method may require a

slightly more storage or introduce more control points for editing

purposes. However, with the ability to reproduce more faithful

results, such imperfection is usually ignorable. However, the

resolution-independent nature of our TCB-spline-based vector

format makes a direct compression of input images. However,

as requiring many vector primitives to achieve a realistic and

detailed look, our method may not outperform the state-of-the-art

bitmap compression and super-resolution methods in terms of

image compression rate.

10 CONCLUSIONS

In this article, we have proposed a novel TCB-spline-based vec-

tor image representation and its associated automatic vectoriza-

tion framework for raster images. By inserting collinear knots at

feature lines, both smooth and discontinuous color variations are

faithfully modeled by the same set of quadratic TCB-splines. A

variational knot mesh generation method is tailored and incorpo-

rated into our framework, which adaptively introduces more knots

at regions with low reconstruction quality. Experiments and com-

parisons show that our framework performs better than other ex-

isting methods in modeling undetected features and complicated

color variations in-between feature lines. Our vectorization repre-

sentation also facilitates a variety of editing operations performed

directly over vector images. Our vector representation for images

can directly be generalized to the vector representation for videos

using trivariate TCB-splines with control points in 6D (space-color-

time) space. One interesting future work is to generalize the vector

ACM Transactions on Graphics, Vol. 41, No. 3, Article 34. Publication date: June 2022.

34:16 • H. Zhu et al.

Fig. 23. Example of authoring using quadratic TCB-splines. (a) The input feature curves (26 curves); (b) initial knot meshes (482 knots) with colors;

(c) control mesh of 1,133 control points for panel (b), with the color specified; (d) vector image for panel (c); (e) new primitives are added into panel

(d), where the rough positions of primitives with different color variations are marked by circles (C1 continuous), circles connected by dash lines (C1 contin-

uous along line segments), circles connected by solid black lines (C0 continuous) and solid blue lines (C−1 continuous), respectively; (f) updated knot mesh

(with 664 knots); (g) updated control mesh (1,636 control points) for panel (f); and (h) the final vector output for panel (g).

reconstruction algorithm from images to videos. The entire video,

treated as 6D volume data, can be reconstructed directly instead

of being vectorized on a frame-by-frame basis to achieve temporal

consistency.

ACKNOWLEDGMENTS

We thank the reviewers for their valuable comments. We are grate-

ful to Shuang Zhao, Kuo-Wei Chen, and Hailing Zhou for sharing

their data and image results for the comparison. We also thank

Chih-Yuan Yao for granting permission to use materials on the

website: http://graphics.csie.ntust.edu.tw/pub/RealTimeTPS/.

REFERENCES
Curtis A. Armstrong. 2006. Vectorization of Raster Images Using B-Spline Surfaces. Mas-

ter’s thesis. Brigham Young University-Provo.
Mikhail Bessmeltsev and Justin Solomon. 2019. Vectorization of line drawings via

polyvector fields. ACM Trans. Graph. 38, 1, Article 9 (Jan. 2019), 12 pages.
John Canny. 1986. A computational approach to edge detection. IEEE Trans. Pattern

Anal. Mach. Intell. 8, 6 (1986), 679–698.
Juan Cao, Zhonggui Chen, Xiaodong Wei, and Yongjie Jessica Zhang. 2019. A finite

element framework based on bivariate simplex splines on triangle configurations.
Comput. Methods Appl. Mech. Eng. 357 (2019), 112598.

Juan Cao, Yanyang Xiao, Zhonggui Chen, Wenping Wang, and Chandrajit Bajaj. 2018.
Functional data approximation on bounded domains using polygonal finite ele-
ments. Comput.-aided Geom. Design 63 (2018), 149–163.

Kuowei Chen, Yingsheng Luo, Yuchi Lai, Yanlin Chen, Chihyuan Yao, Hungkuo Chu,
and Tongyee Lee. 2020. Image vectorization with real-time thin-plate spline. IEEE
Trans. Multimedia 22, 1 (2020), 15–29.

Zhonggui Chen, Jinxin Huang, Juan Cao, and Yongjie Jessica Zhang. 2019. Interpola-
tory curve modeling with feature points control. Comput.-aided Design 114 (2019),
155–163.

Zhonggui Chen, Yanyang Xiao, and Juan Cao. 2014. Approximation by piecewise poly-
nomials on Voronoi tessellation. Graph. Models 76, 5 (2014), 522–531.

Carl De Boor. 1976. Splines as linear combinations of B-splines. A survey. Technical Re-
port No. MRC-TSR-1667. Wisconsin University-Madison Mathematics Research
Center.

Edoardo Alberto Dominici, Nico Schertler, Jonathan Griffin, Shayan Hoshyari, Leonid
Sigal, and Alla Sheffer. 2020. PolyFit: Perception-Aligned vectorization of raster
clip-art via intermediate polygonal fitting. ACM Trans. Graph. 39, 4, Article 77
(July 2020), 16 pages.

Dov Dori and Wenyin Liu. 1999. Sparse pixel vectorization: An algorithm and its per-
formance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 21, 3 (1999), 202–215.

David H. Douglas and Thomas K. Peucker. 1973. Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature. Carto-
graphica: Int. J. Geogr. Info. Geovisual. 10, 2 (1973), 112–122.

Nira Dyn, David Levin, and Samuel Rippa. 1990. Data dependent triangulations for
piecewise linear interpolation. IMA J. Numer. Anal. 10, 1 (1990), 137–154.

Mark Finch, John Snyder, and Hugues Hoppe. 2011. Freeform vector graphics with
controlled thin-plate splines. ACM Trans. Graph. 30, 6 (Dec. 2011), 1–0.

Harley Flanders. 1973. Differentiation under the integral sign. Amer. Math. Month. 80,
6 (1973), 615–627.

Michael Franssen. 1995. Evaluation of DMS-splines. Master’s thesis. Eindhoven Uni-
versity of Technology.

Akemi Gálvez and Andrés Iglesias. 2012. Particle swarm optimization for non-uniform
rational B-spline surface reconstruction from clouds of 3D data points. Info. Sci.
192 (June 2012), 174–192.

Yi Guo, Zhuming Zhang, Chu Han, Wenbo Hu, Chengze Li, and Tien-Tsin Wong. 2019.
Deep line drawing vectorization via line subdivision and topology reconstruction.
Comput. Graph. Forum 38, 7 (2019), 81–90.

Xavier Hilaire and Karl Tombre. 2006. Robust and accurate vectorization of line draw-
ings. IEEE Trans. Pattern Anal. Mach. Intell. 28, 6 (June 2006), 890–904.

ACM Transactions on Graphics, Vol. 41, No. 3, Article 34. Publication date: June 2022.

http://graphics.csie.ntust.edu.tw/pub/RealTimeTPS/

TCB-spline-based Image Vectorization • 34:17

Kai Hormann and Michael S. Floater. 2006. Mean value coordinates for arbitrary pla-
nar polygons. ACM Trans. Graph. 25, 4 (Oct. 2006), 1424–441.

Shayan Hoshyari, Edoardo Alberto Dominici, Alla Sheffer, Nathan Carr, Zhaowen
Wang, Duygu Ceylan, and I.-Chao Shen. 2018. Perception-Driven semi-structured
boundary vectorization. ACM Trans. Graph. 37, 4, Article 118 (July 2018),
14 pages.

Fei Hou, Qian Sun, Zheng Fang, Yong-Jin Liu, Shi-Min Hu, Hong Qin, Aimin Hao, and
Ying He. 2020. Poisson vector graphics (PVG). IEEE Trans. Visual. Comput. Graph.
26, 2 (2020), 1361–1371.

Yixin Hu, Teseo Schneider, Xifeng Gao, Qingnan Zhou, Alec Jacobson, Denis Zorin,
and Daniele Panozzo. 2019. TriWild: Robust triangulation with curve constraints.
ACM Trans. Graph. 38, 4, Article 52 (July 2019), 15 pages.

Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011. Bounded bihar-
monic weights for real-time deformation. ACM Trans. Graph. (Proceedings of ACM
SIGGRAPH) 30, 4 (2011), 78:1–78:8.

Stefan Jeschke, David Cline, and Peter Wonka. 2009. A GPU Laplacian solver for diffu-
sion curves and Poisson image editing. ACM Trans. Graph. 28, 5, Article 116 (Dec.
2009), 8 pages.

Yue Jia, Yongjie Zhang, Gang Xu, Xiaoying Zhuang, and Timon Rabczuk. 2013. Repro-
ducing kernel triangular B-spline-based FEM for solving PDEs. Comput. Methods
Appl. Mech. Eng. 267 (2013), 342–358.

Ruchin Kansal and Subodh Kumar. 2015. A vectorization framework for constant and
linear gradient filled regions. Visual Comput. 31, 5 (May 2015), 717–732.

Oliver Kreylos and Bernd Hamann. 2001. On simulated annealing and the construc-
tion of linear spline approximations for scattered data. IEEE Trans. Visual. Comput.
Graph. 7, 1 (Jan 2001), 17–31.

Kuo-Chin Fan, Den-Fong Chen, and Ming-Gang Wen. 1995. A new vectorization-
based approach to the skeletonization of binary images. In Proceedings of 3rd
International Conference on Document Analysis and Recognition, Vol. 2. 627–
630.

Yu-Kun Lai, Shi-Min Hu, and Ralph R. Martin. 2009. Automatic and topology-
preserving gradient mesh generation for image vectorization. ACM Trans. Graph.
28, 3, Article 85 (July 2009), 8 pages.

Gregory Lecot and Bruno Lévy. 2006. Ardeco: Automatic region detection and conver-
sion. In Proceedings of the 17th Eurographics Symposium on Rendering (EGSR’06).
Nicosia/Cyprus, 349–360.

Zicheng Liao, Hugues Hoppe, David Forsyth, and Yizhou Yu. 2012. A subdivision-
based representation for vector image editing. IEEE Trans. Visual. Comput. Graph.
18, 11 (Nov 2012), 1858–1867.

Yuanxin Liu. 2007. Computations of Delaunay and higher order triangulations, with
applications to splines. Ph.D. Dissertation. University of North Carolina at Chapel
Hill.

Yuanxin Liu and Jack Snoeyink. 2007. Quadratic and cubic B-splines by generaliz-
ing higher-order Voronoi diagrams. In Proceedings of the Symposium on Compu-
tational Geometry. 150–157.

Marian Neamtu. 2001. What is the natural generalization of univariate splines to
higher dimensions? In Mathematical Methods for Curves and Surfaces. Vanderbilt
University, Nashville, TN, 355–392.

Alexandrina Orzan, Adrien Bousseau, Holger Winnemöller, Pascal Barla, Joëlle Thol-
lot, and David Salesin. 2008. Diffusion curves: A vector representation for smooth-
shaded images. ACM Trans. Graph. 27, 3, Article 92 (Aug. 2008), 8 pages.

Pradyumna Reddy, Michael Gharbi, Michal Lukac, and Niloy J. Mitra. 2021. Im2Vec:
Synthesizing Vector Graphics without Vector Supervision. Retrieved from
https://arXiv:cs.CV/2102.02798.

ScanFont. 2017. Font Lab. Retrieved from http://old.fontlab.com/font-converter/
scanfont//.

Dominique Schmitt. 2019. Bivariate B-splines from convex pseudo-circle configu-
rations. In Fundamentals of Computation Theory, Leszek Antoni Gąsieniec, Jes-
per Jansson, and Christos Levcopoulos (Eds.). Springer International Publishing,
Cham, 335–349.

Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Christian Rössl, and Hans-
Peter Seidel. 2004. Laplacian surface editing. In Proceedings of the Eurograph-
ics/ACM SIGGRAPH Symposium on Geometry Processing. 175–184.

Dan Su and Philip Willis. 2004. Image interpolation by pixel-level data-dependent
triangulation. Comput. Graph. Forum 23, 2 (2004), 189–201.

Jian Sun, Lin Liang, Fang Wen, and Heung-Yeung Shum. 2007. Image vectorization
using optimized gradient meshes. ACM Trans. Graph. 26, 3, Article 11 (July 2007).

Timothy Sun, Papoj Thamjaroenporn, and Changxi Zheng. 2014. Fast multipole rep-
resentation of diffusion curves and points. ACM Trans. Graph. 33, 4, Article 53
(July 2014), 12 pages.

Xin Sun, Guofu Xie, Yue Dong, Stephen Lin, Weiwei Xu, Wencheng Wang, Xin Tong,
and Baining Guo. 2012. Diffusion curve textures for resolution independent tex-
ture mapping. ACM Trans. Graph. 31, 4, Article 74 (July 2012), 9 pages.

Cihan Topal and Cuneyt Akinlar. 2012. Edge drawing: A combined real-time edge and
segment detector. J. Visual Commun. Image Represent. 23, 6 (2012), 862–872.

William Thomas Tutte. 1963. How to draw a graph. Proc. London Math. Soc. s3-13, 1
(1963), 743–767.

Tian Xia, Binbin Liao, and Yizhou Yu. 2009. Patch-based image vectorization with
automatic curvilinear feature alignment. ACM Trans. Graph. 28, 5, Article 115
(Dec. 2009), 115:1–115:10 pages.

Guofu Xie, Xin Sun, Xin Tong, and Derek Nowrouzezahrai. 2014. Hierarchical diffu-
sion curves for accurate automatic image vectorization. ACM Trans. Graph. 33, 6,
Article 230 (Nov. 2014), 11 pages.

Weicheng Xie, Xiufen Zou, Jiandong Yang, and Jiebin Yang. 2012. Iteration and op-
timization scheme for the reconstruction of 3D surfaces based on non-uniform
rational B-splines. Comput.-aided Design 44, 11 (Nov. 2012), 1127–1140.

Zhipei Yan, Stephen Schiller, Gregg Wilensky, Nathan Carr, and Scott Schaefer. 2017.
K-Curves: Interpolation at local maximum curvature. ACM Trans. Graph. 36, 4,
Article 129 (July 2017), 7 pages.

Fujiichi Yoshimoto, Toshinobu Harada, and Yoshihide Yoshimoto. 2003. Data fitting
with a spline using a real-coded genetic algorithm. Comput.-aided Design 35, 8
(2003), 751–760.

Yuhua Zhang, Juan Cao, Zhonggui Chen, and Xiaoming Zeng. 2017. Surface re-
construction using simplex splines on feature-sensitive configurations. Comput.-
aided Geom. Design 50 (2017), 14–28.

Shuang Zhao, Fredo Durand, and Changxi Zheng. 2018. Inverse diffusion curves using
shape optimization. IEEE Trans. Visual. Comput. Graph. 24, 7 (2018), 2153–2166.

Hailing Zhou, Jianmin Zheng, and Lei Wei. 2014. Representing images using curvi-
linear feature driven subdivision surfaces. IEEE Trans. Image Process. 23, 8 (Aug
2014), 3268–3280.

Received April 2021; revised January 2022; accepted January 2022

ACM Transactions on Graphics, Vol. 41, No. 3, Article 34. Publication date: June 2022.

http://arxiv.org/abs/cs.CV/2102.02798.
http://old.fontlab.com/font-converter/scanfont//

