
Supplemental Material:
VC-Net: Deep Volume-Composition Networks for Segmentation

and Visualization of Highly Sparse and Noisy Image Data

1 SUPPLEMENTAL FIGURES

Supplemental figures are included for demonstrating additional quali-
tative results from TubeTK and MICRO-MRI datasets in Fig. 1, and
different modalities of input image examples from TubeTK MRA and
MICRO-MRI datasets in our VC-Net method in Fig. 2.

2 ADDITIONAL QUANTITATIVE PERFORMANCE EVALUATION

In order to further demonstrate the effectiveness of our VC-Net (espe-
cially 3D-to-2D projection in dual-stream and 2D-to-3D unprojection
for joint embedding in our proposed architecture), Tab. 1 shows the
numerical analyses on some simple combinations of the final results
from 3D U-Net and 2D U-Net through average and max operations on
the probabilities.

Table 1: Quantitative performance evaluation between different com-
binations of 3D U-Net and 2D U-Net and our method on TubeTK
dataset.

Methods / Metrics Dice (%) ↑
2D U-Net 65.10
3D U-Net 71.01

Average Fusion 65.15
Max Fusion 69.41

Ours 71.81

From Tab. 1, we can see our VC-Net overall outperforms both com-
bination methods of the final results of 3D U-Net and 2D U-Net. As
shown in Sec. 4.1 of the paper, 2D U-Net performs much worse than a
standalone 3D U-Net on each metric. Unlike the 2D composited MIP
stream in VC-Net, 2D U-Net itself essentially does not involve any
complementary or enhancement information, and the reception field
of 2D U-Net is restricted to an isolated 2D slice patch every time and
thus lack of the contextual information from the third dimension, which
is fatal to the sparse 3D vessel segmentation. Without comprehensive
3D spacing neighborhood, 2D U-Net is more prone to strong noise
perturbation (high-intensity true negative) and insensitive to weak ves-
sel signal (low-intensity true positive), as a result, 2D U-Net performs
unsatisfactorily even when equipped with more feature embedding
channels. Consequently, it may not be an ideal idea to fuse the results
from 3D U-Net and 2D U-Net through the simple combinations.

Here, Dice Similarity is provided since it is the most comprehensive
and effective indicator / metric to justify the segmentation performance.
It measures the intersection over union between the prediction and
the ground truth, which comprehensively takes into account all true
positive (TP), false negative (FN), as well as false positive (FP). This
is also why we (as well as many other research works) select Dice
Similarity as the loss function in our VC-Net.
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3 LABELING REFINEMENT AND VISUALIZATION TOOL

The interface and basic functions of our specifically-designed cere-
brovascular labeling and visualization tool are shown in Fig. 3. Our
tool enables slice-wise refinement based on the pre-computed vessel la-
bels by MRAGnls, MRVGavg, and SWIATRG methods, instead of labeling
from scratch manually. The interactive vessel editing is conducted in
the current image slice window, e.g., manually labeling / erasing brush,
automatically labeling connected components by flood-fill method as
shown in Fig. 3 (a). The slice under editing is simultaneously visualized
in solid red for a clearer examination in Fig. 3 (d). Unlike the opera-
tion in most of the general-purpose labeling / segmentation softwares
in which the current labeling (2D) slice is usually isolated from its
(3D) context and thus lacks the crucial reference, the vessel labeling
in our developed tool is comprehensively assisted and guided by the
following specifically-desired functions: (1) simultaneously updated
3D vasculature system from the beginning to the current slices with
several interactions, such as rotation and zooming in / out, to check the
cross-plane 3D vessel connectivity (Fig. 3 b); (2) synchronized brain
vessel volume rendering to trace the overall segmented vasculature
system (Fig. 3 c); (3) adaptive MIP labeling display (with user-defined
number of projection slices) that enables users to evaluate the contextu-
al slices to strengthen the vessel connectivity and rule out noise (Fig. 3
e). Our tool can greatly facilitate the continuous slice-wise labeling
and reduce the labeling ambiguity in some challenging areas of the
micro-cerebrovascular structure, which have been extensively tested
and evaluated by our collaborative domain experts. Supplemental Video
is included to demonstrate the dynamic visualization and interaction in
detail.

4 SUPPLEMENTAL VIDEO

Supplemental video is included to demonstrate the joint 3D visualiza-
tion of the major-level and micro-level vessels in the midbrain and the
whole brain on MICRO-MRI dataset; as well as the dynamic visual-
ization and interaction of our developed cerebrovascular labeling and
visualization tool.
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Fig. 1: Additional qualitative results from two datasets (top: TubeTK dataset, bottom: MICRO-MRI major-level vessel dataset): The 3D global
vessel segmentations are shown from superior direction. The MIP segmentations are visualized by 5-sliced MRA / MICRO-MRI images, and the
corresponding vessel masks in MIPs are marked in semi-transparent red. The highlighted comparison areas are marked in circles. The 3D MRAG
/ MRVG images from MICRO-MRI dataset only focus on midbrain area and thus have less vessels compared with TubeTK dataset. It is noted
that in TubeTK dataset even the ground truth vessel label does not perfectly cover certain vessel continuity, which can be clearly traced on MIPs
(such as some yellow circles in the ground truth MIPs), in the corresponding MRA slices. We will further refine the ground truth vessel labels of
TubeTK dataset by using our developed labeling tool under the domain experts’ guidance in our future work.
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Fig. 2: The different modalities of input image examples from TubeTK MRA and MICRO-MRI datasets in our VC-Net method.
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Fig. 3: Our developed cerebrovascular labeling and visualization tool (e.g., an example of major-level arterial vessels from MICRO-MRI).
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